Ellipse
(the database of solved problems)
All the problems and solutions shown below were generated using the Ellipse Calculator.
| ID |
Problem |
Count |
| 401 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 16 } + \dfrac{ \left( y + 1 \right)^2}{ 4 } = 1 $$ | 2 |
| 402 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 12 } + \dfrac{ \left( y + 6 \right)^2}{ 11 } = 1 $$ | 2 |
| 403 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 25 } + \dfrac{ \left( y + 1 \right)^2}{ 64 } = 1 $$ | 2 |
| 404 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 64 } + \dfrac{ \left( y + 1 \right)^2}{ 25 } = 1 $$ | 2 |
| 405 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 49 } + \dfrac{ \left( y - 2 \right)^2}{ 9 } = 1 $$ | 2 |
| 406 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 9 } + \dfrac{ \left( y - 2 \right)^2}{ 49 } = 1 $$ | 2 |
| 407 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 49 } + \dfrac{ \left( y - 3 \right)^2}{ 9 } = 1 $$ | 2 |
| 408 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 10 \right)^2}{ 121 } + \dfrac{ \left( y + 3 \right)^2}{ 49 } = 1 $$ | 2 |
| 409 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 36 } + \dfrac{ \left( y + 1 \right)^2}{ 16 } = 1 $$ | 2 |
| 410 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 81 } + \dfrac{ \left( y + 9 \right)^2}{ 16 } = 1 $$ | 2 |
| 411 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 8 \right)^2}{ 64 } + \dfrac{ \left( y - 1 \right)^2}{ 49 } = 1 $$ | 2 |
| 412 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 25 } + \dfrac{ \left( y + 4 \right)^2}{ 9 } = 1 $$ | 2 |
| 413 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 25 } + \dfrac{ \left( y + 1 \right)^2}{ 4 } = 1 $$ | 2 |
| 414 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 2 \left( x + 2 \right)^2}{ 2 } + \dfrac{ 2 \left( y + 2 \right)^2}{ 2 } = 1 $$ | 2 |
| 415 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 9 } + \dfrac{ \left( y - 3 \right)^2}{ 16 } = 1 $$ | 2 |
| 416 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 4 \right)^2}{ 16 } + \dfrac{ \left( y - 4 \right)^2}{ 25 } = 1 $$ | 2 |
| 417 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 16 } + \dfrac{ \left( y - 3 \right)^2}{ 36 } = 1 $$ | 2 |
| 418 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 9 } + \dfrac{ y^2}{ 36 } = 1 $$ | 2 |
| 419 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 8 \right)^2}{ 16 } + \dfrac{ \left( y + 2 \right)^2}{ 36 } = 1 $$ | 2 |
| 420 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 100x^2 + 36y^2 = 3600 $$ | 2 |
| 421 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 4 } + \dfrac{ y^2}{ 25 } = 1 $$ | 2 |
| 422 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 625 } + \dfrac{ y^2}{ 100 } = 1 $$ | 2 |
| 423 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 36 } + \dfrac{ y^2}{ 625 } = 1 $$ | 2 |
| 424 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 4 \right)^2}{ 9 } + \dfrac{ \left( y - 2 \right)^2}{ 4 } = 1 $$ | 2 |
| 425 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 25 \left( x - 2 \right)^2}{ 1031 } + \dfrac{ 9 \left( y + 4 \right)^2}{ 1031 } = 1 $$ | 2 |
| 426 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 44 } + \dfrac{ \left( y - 2 \right)^2}{ 18 } = 1 $$ | 2 |
| 427 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 144 } + \dfrac{ \left( y - 4 \right)^2}{ 1 } = 1 $$ | 2 |
| 428 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 16 } + \dfrac{ \left( y - 2 \right)^2}{ 9 } = 1 $$ | 2 |
| 429 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 21 \right)^2}{ 1 } + \dfrac{ \left( y - 12 \right)^2}{ 11 } = 1 $$ | 2 |
| 430 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 81 } + \dfrac{ \left( y + 6 \right)^2}{ 49 } = 1 $$ | 2 |
| 431 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 9 } + \dfrac{ \left( y + 4 \right)^2}{ 4 } = 1 $$ | 2 |
| 432 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 100 } + \dfrac{ y^2}{ \frac{ 121 }{ 4 } } = 1 $$ | 2 |
| 433 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 10 } + \dfrac{ \left( y + 8 \right)^2}{ 15 } = 1 $$ | 2 |
| 434 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 9 } + \dfrac{ \left( y - 2 \right)^2}{ 16 } = 1 $$ | 2 |
| 435 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 9 } + \dfrac{ \left( y - 2 \right)^2}{ 16 } = 1 $$ | 2 |
| 436 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ \frac{ 1 }{ 2 } } + \dfrac{ \left( y - 2 \right)^2}{ 4 } = 1 $$ | 2 |
| 437 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ \frac{ 1 }{ 10 } } + \dfrac{ \left( y + 1 \right)^2}{ \frac{ 1 }{ 5 } } = 1 $$ | 2 |
| 438 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 8640.632 } + \dfrac{ y^2}{ 8637.8436 } = 1 $$ | 2 |
| 439 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 4 } + \dfrac{ \left( y - 1 \right)^2}{ 3 } = 1 $$ | 2 |
| 440 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 9 \left( x - 1 \right)^2}{ 225 } + \dfrac{ 25 \left( y + 2 \right)^2}{ 225 } = 1 $$ | 2 |
| 441 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 3x^2 + 4y^2 = 1 $$ | 2 |
| 442 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 4 } + \dfrac{ y^2}{ 1 } = 1 $$ | 2 |
| 443 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 4 } + \dfrac{ \left( y + 1 \right)^2}{ 3 } = 1 $$ | 2 |
| 444 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + \frac{ 1 }{ 5 } \right)^2}{ 17.1395 } + \dfrac{ \left( y + \frac{ 1 }{ 10 } \right)^2}{ 7.3495 } = 1 $$ | 2 |
| 445 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 4 } + \dfrac{ \left( y - 1 \right)^2}{ 1 } = 1 $$ | 2 |
| 446 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 25 } + \dfrac{ \left( y - 4 \right)^2}{ 4 } = 1 $$ | 2 |
| 447 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 64 } + \dfrac{ \left( y - 3 \right)^2}{ 16 } = 1 $$ | 2 |
| 448 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 10 \right)^2}{ 1600 } + \dfrac{ \left( y - 20 \right)^2}{ 400 } = 1 $$ | 2 |
| 449 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 15 \right)^2}{ 3600 } + \dfrac{ \left( y - 30 \right)^2}{ 900 } = 1 $$ | 2 |
| 450 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 40 \right)^2}{ 900 } + \dfrac{ \left( y - 40 \right)^2}{ 1600 } = 1 $$ | 2 |