Ellipse
(the database of solved problems)
All the problems and solutions shown below were generated using the Ellipse Calculator.
| ID |
Problem |
Count |
| 351 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 5x^2 + 9y^2 = 45 $$ | 2 |
| 352 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 100x^2 + 36y^2 = 3600 $$ | 2 |
| 353 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 8 \right)^2}{ 16 } + \dfrac{ \left( y + 2 \right)^2}{ 36 } = 1 $$ | 2 |
| 354 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 9 } + \dfrac{ y^2}{ 36 } = 1 $$ | 2 |
| 355 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \frac{ 15129 }{ 4 } } + \dfrac{ y^2}{ \frac{ 15876 }{ 25 } } = 1 $$ | 2 |
| 356 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 5x^2 + y^2 = 5 $$ | 2 |
| 357 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 16 } + \dfrac{ \left( y - 3 \right)^2}{ 36 } = 1 $$ | 2 |
| 358 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 4 \right)^2}{ 16 } + \dfrac{ \left( y - 4 \right)^2}{ 25 } = 1 $$ | 2 |
| 359 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 13 } + \dfrac{ y^2}{ 2 } = 1 $$ | 2 |
| 360 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 9 } + \dfrac{ \left( y - 3 \right)^2}{ 16 } = 1 $$ | 2 |
| 361 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 9x^2 + 2y^2 = 18 $$ | 2 |
| 362 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 256 } + \dfrac{ y^2}{ 192 } = 1 $$ | 2 |
| 363 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 9x^2 + y^2 = 27 $$ | 2 |
| 364 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 2 \left( x + 2 \right)^2}{ 2 } + \dfrac{ 2 \left( y + 2 \right)^2}{ 2 } = 1 $$ | 2 |
| 365 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 64 } + \dfrac{ y^2}{ 60 } = 1 $$ | 2 |
| 366 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 25 } + \dfrac{ \left( y + 1 \right)^2}{ 4 } = 1 $$ | 2 |
| 367 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 100 } + \dfrac{ y^2}{ \frac{ 9471 }{ 100 } } = 1 $$ | 2 |
| 368 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 25 } + \dfrac{ \left( y + 4 \right)^2}{ 9 } = 1 $$ | 2 |
| 369 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 8 \right)^2}{ 64 } + \dfrac{ \left( y - 1 \right)^2}{ 49 } = 1 $$ | 2 |
| 370 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 81 } + \dfrac{ \left( y + 9 \right)^2}{ 16 } = 1 $$ | 2 |
| 371 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - \frac{ 32 }{ 5 } \right)^2}{ \frac{ 1 }{ 2 } } + \dfrac{ \left( y - \frac{ 11 }{ 5 } \right)^2}{ \frac{ 1 }{ 5 } } = 1 $$ | 2 |
| 372 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - \frac{ 899 }{ 100 } \right)^2}{ \frac{ 19 }{ 100 } } + \dfrac{ \left( y - \frac{ 53 }{ 20 } \right)^2}{ \frac{ 49 }{ 100 } } = 1 $$ | 2 |
| 373 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 36 } + \dfrac{ \left( y + 1 \right)^2}{ 16 } = 1 $$ | 2 |
| 374 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 10 \right)^2}{ 121 } + \dfrac{ \left( y + 3 \right)^2}{ 49 } = 1 $$ | 2 |
| 375 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - \frac{ 293 }{ 25 } \right)^2}{ \frac{ 1 }{ 4 } } + \dfrac{ \left( y - \frac{ 131 }{ 50 } \right)^2}{ \frac{ 9 }{ 20 } } = 1 $$ | 2 |
| 376 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 49 } + \dfrac{ \left( y - 3 \right)^2}{ 9 } = 1 $$ | 2 |
| 377 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 50 } + \dfrac{ y^2}{ 16 } = 1 $$ | 2 |
| 378 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 9 } + \dfrac{ \left( y - 2 \right)^2}{ 49 } = 1 $$ | 2 |
| 379 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 49 } + \dfrac{ \left( y - 2 \right)^2}{ 9 } = 1 $$ | 2 |
| 380 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 64 } + \dfrac{ \left( y + 1 \right)^2}{ 25 } = 1 $$ | 2 |
| 381 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 25 } + \dfrac{ \left( y + 1 \right)^2}{ 64 } = 1 $$ | 2 |
| 382 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 12 } + \dfrac{ \left( y + 6 \right)^2}{ 11 } = 1 $$ | 2 |
| 383 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 16 } + \dfrac{ \left( y + 1 \right)^2}{ 4 } = 1 $$ | 2 |
| 384 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 45 } + \dfrac{ \left( y - 5 \right)^2}{ 9 } = 1 $$ | 2 |
| 385 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 4 } + \dfrac{ \left( y - 2 \right)^2}{ 25 } = 1 $$ | 2 |
| 386 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 4 } + \dfrac{ y^2}{ 10 } = 1 $$ | 2 |
| 387 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \sqrt{ 6 } } + \dfrac{ y^2}{ \sqrt{ 7 } } = 1 $$ | 2 |
| 388 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 4 \right)^2}{ 9 } + \dfrac{ \left( y + 2 \right)^2}{ 4 } = 1 $$ | 2 |
| 389 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 7 \right)^2}{ 1 } + \dfrac{ \left( y - 3 \right)^2}{ 4 } = 1 $$ | 2 |
| 390 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 7 \right)^2}{ 1 } + \dfrac{ \left( y - 2 \right)^2}{ 4 } = 1 $$ | 2 |
| 391 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ x^2 + 2y^2 = 4 $$ | 2 |
| 392 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 5x^2 + 2y^2 = 20 $$ | 2 |
| 393 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 5x^2 + 9y^2 = 45 $$ | 2 |
| 394 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 5x^2 + y^2 = 5 $$ | 2 |
| 395 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 9x^2 + 2y^2 = 18 $$ | 2 |
| 396 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ x^2 + 6y^2 = 18 $$ | 2 |
| 397 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 36 } + \dfrac{ \left( y + 3 \right)^2}{ 4 } = 1 $$ | 2 |
| 398 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 9 } + \dfrac{ \left( y - 2 \right)^2}{ 36 } = 1 $$ | 2 |
| 399 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 15x^2 + 7y^2 = 105 $$ | 2 |
| 400 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 4 } + \dfrac{ y^2}{ 8 } = 1 $$ | 2 |