Ellipse
(the database of solved problems)
All the problems and solutions shown below were generated using the Ellipse Calculator.
| ID |
Problem |
Count |
| 1001 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 9 } + \dfrac{ y^2}{ 25 } = 1 $$ | 1 |
| 1002 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 25 } + \dfrac{ \left( y - 4 \right)^2}{ 9 } = 1 $$ | 1 |
| 1003 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 16 \left( x - 2 \right)^2}{ 1 } + \dfrac{ 9 \left( y + 3 \right)^2}{ 1 } = 1 $$ | 1 |
| 1004 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 1 } + \dfrac{ 4 \left( y - 2 \right)^2}{ 1 } = 1 $$ | 1 |
| 1005 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 4 \right)^2}{ 4 } + \dfrac{ \left( y - 4 \right)^2}{ 9 } = 1 $$ | 1 |
| 1006 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 4 } + \dfrac{ y^2}{ 60 } = 1 $$ | 1 |
| 1007 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 4 } + \dfrac{ y^2}{ 64 } = 1 $$ | 1 |
| 1008 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 4 } + \dfrac{ y^2}{ 68 } = 1 $$ | 1 |
| 1009 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \frac{ 7 }{ 2 } } + \dfrac{ y^2}{ 7 } = 1 $$ | 1 |
| 1010 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 3x^2 + 6y^2 = 6 $$ | 1 |
| 1011 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 6 \right)^2}{ 49 } + \dfrac{ \left( y - 4 \right)^2}{ 9 } = 1 $$ | 1 |
| 1012 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 16 } + \dfrac{ \left( y - 5 \right)^2}{ 25 } = 1 $$ | 1 |
| 1013 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 16 } + \dfrac{ \left( y + 2 \right)^2}{ 9 } = 1 $$ | 1 |
| 1014 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 16 } + \dfrac{ \left( y + 2 \right)^2}{ 9 } = 1 $$ | 1 |
| 1015 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 4 } + \dfrac{ \left( y - 3 \right)^2}{ 16 } = 1 $$ | 1 |
| 1016 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 4 } + \dfrac{ \left( y - 3 \right)^2}{ 9 } = 1 $$ | 1 |
| 1017 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 9 } + \dfrac{ y^2}{ 14 } = 1 $$ | 1 |
| 1018 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 7 \right)^2}{ 64 } + \dfrac{ y^2}{ 81 } = 1 $$ | 1 |
| 1019 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 81 } + \dfrac{ y^2}{ 64 } = 1 $$ | 1 |
| 1020 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 9 } + \dfrac{ \left( y + 2 \right)^2}{ 16 } = 1 $$ | 1 |
| 1021 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 9 } + \dfrac{ \left( y - 4 \right)^2}{ 25 } = 1 $$ | 1 |
| 1022 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 16 } + \dfrac{ \left( y - 1 \right)^2}{ 25 } = 1 $$ | 1 |
| 1023 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 9 } + \dfrac{ \left( y - 5 \right)^2}{ 4 } = 1 $$ | 1 |
| 1024 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 25 } + \dfrac{ \left( y + 2 \right)^2}{ 9 } = 1 $$ | 1 |
| 1025 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 8 \right)^2}{ 1 } + \dfrac{ \left( y - 3 \right)^2}{ 49 } = 1 $$ | 1 |
| 1026 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 7 \right)^2}{ 16 } + \dfrac{ \left( y - 2 \right)^2}{ 9 } = 1 $$ | 1 |
| 1027 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 25 \right)^2}{ 16 } + \dfrac{ \left( y - 9 \right)^2}{ 9 } = 1 $$ | 1 |
| 1028 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 25 \right)^2}{ 1 } + \dfrac{ \left( y - 9 \right)^2}{ 9 } = 1 $$ | 1 |
| 1029 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 16 } + \dfrac{ \left( y - 3 \right)^2}{ 1 } = 1 $$ | 1 |
| 1030 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 54 } + \dfrac{ y^2}{ 36 } = 1 $$ | 1 |
| 1031 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 9 } + \dfrac{ y^2}{ 10 } = 1 $$ | 1 |
| 1032 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 4 } + \dfrac{ y^2}{ 30 } = 1 $$ | 1 |
| 1033 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 91 } + \dfrac{ y^2}{ 100 } = 1 $$ | 1 |
| 1034 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 20 } + \dfrac{ y^2}{ 69 } = 1 $$ | 1 |
| 1035 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 10 \right)^2}{ 81 } + \dfrac{ y^2}{ 16 } = 1 $$ | 1 |
| 1036 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 10 \right)^2}{ 25 } + \dfrac{ y^2}{ 64 } = 1 $$ | 1 |
| 1037 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 4 \left( x + 1 \right)^2}{ \frac{ 3 }{ 2 } } + \dfrac{ \left( y - 2 \right)^2}{ 3 } = 1 $$ | 1 |
| 1038 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 9 } + \dfrac{ \left( y - 5 \right)^2}{ 64 } = 1 $$ | 1 |
| 1039 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 32 } + \dfrac{ y^2}{ 40 } = 1 $$ | 1 |
| 1040 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 32 } + \dfrac{ y^2}{ 34 } = 1 $$ | 1 |
| 1041 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 58 } + \dfrac{ y^2}{ 228 } = 1 $$ | 1 |
| 1042 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 327 } + \dfrac{ y^2}{ 160 } = 1 $$ | 1 |
| 1043 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 9 } + \dfrac{ \left( y + 1 \right)^2}{ 1 } = 1 $$ | 1 |
| 1044 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 7 } + \dfrac{ \left( y + 2 \right)^2}{ 3 } = 1 $$ | 1 |
| 1045 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 36 } + \dfrac{ \left( y + 6 \right)^2}{ 4 } = 1 $$ | 1 |
| 1046 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 4 } + \dfrac{ \left( y - 4 \right)^2}{ 25 } = 1 $$ | 1 |
| 1047 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 18 } + \dfrac{ y^2}{ \frac{ 12 }{ 5 } } = 1 $$ | 1 |
| 1048 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 5 } + \dfrac{ y^2}{ 2 } = 1 $$ | 1 |
| 1049 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 16 } + \dfrac{ \left( y + 1 \right)^2}{ 1 } = 1 $$ | 1 |
| 1050 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 144x^2 + y^2 = 144 $$ | 1 |