Ellipse
(the database of solved problems)
All the problems and solutions shown below were generated using the Ellipse Calculator.
| ID |
Problem |
Count |
| 951 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 36 } + \dfrac{ \left( y - 4 \right)^2}{ 4 } = 1 $$ | 1 |
| 952 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 30 } + \dfrac{ y^2}{ 15 } = 1 $$ | 1 |
| 953 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 16 } + \dfrac{ \left( y - 3 \right)^2}{ 25 } = 1 $$ | 1 |
| 954 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 25x^2 + 16y^2 = 156 $$ | 1 |
| 955 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 100 } + \dfrac{ \left( y - 3 \right)^2}{ 36 } = 1 $$ | 1 |
| 956 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 4 } + \dfrac{ \left( y - 6 \right)^2}{ 25 } = 1 $$ | 1 |
| 957 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 25 } + \dfrac{ y^2}{ 49 } = 1 $$ | 1 |
| 958 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 4x^2 + y^2 = 1 $$ | 1 |
| 959 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \frac{ 406 }{ 125 } } + \dfrac{ y^2}{ \frac{ 463 }{ 200 } } = 1 $$ | 1 |
| 960 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 36 } + \dfrac{ \left( y + 6 \right)^2}{ 100 } = 1 $$ | 1 |
| 961 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 16 } + \dfrac{ \left( y - 4 \right)^2}{ 25 } = 1 $$ | 1 |
| 962 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 9 } + \dfrac{ \left( y - 3 \right)^2}{ 25 } = 1 $$ | 1 |
| 963 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 5 } + \dfrac{ \left( y - 5 \right)^2}{ 6 } = 1 $$ | 1 |
| 964 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 25 } + \dfrac{ \left( y - 5 \right)^2}{ 36 } = 1 $$ | 1 |
| 965 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 16 } + \dfrac{ \left( y - 7 \right)^2}{ 36 } = 1 $$ | 1 |
| 966 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 16 } + \dfrac{ y^2}{ 9 } = 1 $$ | 1 |
| 967 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 16 } + \dfrac{ y^2}{ 9 } = 1 $$ | 1 |
| 968 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ \frac{ 19 }{ 10 } } + \dfrac{ \left( y - 3 \right)^2}{ 2 } = 1 $$ | 1 |
| 969 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 9 } + \dfrac{ \left( y + 2 \right)^2}{ 4 } = 1 $$ | 1 |
| 970 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 9 } + \dfrac{ \left( y + 2 \right)^2}{ 25 } = 1 $$ | 1 |
| 971 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 16 } + \dfrac{ \left( y - 3 \right)^2}{ 25 } = 1 $$ | 1 |
| 972 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 4 } + \dfrac{ \left( y - 3 \right)^2}{ 9 } = 1 $$ | 1 |
| 973 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 7 \right)^2}{ 64 } + \dfrac{ \left( y - 9 \right)^2}{ 49 } = 1 $$ | 1 |
| 974 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 15 } + \dfrac{ y^2}{ 16 } = 1 $$ | 1 |
| 975 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 16 } + \dfrac{ y^2}{ 15 } = 1 $$ | 1 |
| 976 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 32 } + \dfrac{ y^2}{ 30 } = 1 $$ | 1 |
| 977 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 256 } + \dfrac{ y^2}{ 225 } = 1 $$ | 1 |
| 978 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 25 } + \dfrac{ y^2}{ 169 } = 1 $$ | 1 |
| 979 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 4 } + \dfrac{ \left( y - 1 \right)^2}{ 25 } = 1 $$ | 1 |
| 980 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 3x^2 + 2y^2 = 3 $$ | 1 |
| 981 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 50 } + \dfrac{ y^2}{ 85 } = 1 $$ | 1 |
| 982 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 4 \right)^2}{ 4 } + \dfrac{ \left( y + 4 \right)^2}{ 9 } = 1 $$ | 1 |
| 983 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 2500 } + \dfrac{ y^2}{ 7225 } = 1 $$ | 1 |
| 984 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 16 } + \dfrac{ \left( y - 1 \right)^2}{ 4 } = 1 $$ | 1 |
| 985 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 4 } + \dfrac{ \left( y + 5 \right)^2}{ 25 } = 1 $$ | 1 |
| 986 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 4 } + \dfrac{ \left( y - 5 \right)^2}{ 9 } = 1 $$ | 1 |
| 987 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 9 } + \dfrac{ \left( y - 1 \right)^2}{ 25 } = 1 $$ | 1 |
| 988 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 16 } + \dfrac{ \left( y - 5 \right)^2}{ 9 } = 1 $$ | 1 |
| 989 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 4 \right)^2}{ 4 } + \dfrac{ \left( y + 3 \right)^2}{ 9 } = 1 $$ | 1 |
| 990 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 4 } + \dfrac{ \left( y - 4 \right)^2}{ 9 } = 1 $$ | 1 |
| 991 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 64 } + \dfrac{ \left( y + 3 \right)^2}{ 49 } = 1 $$ | 1 |
| 992 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 6 \right)^2}{ 9 } + \dfrac{ \left( y + 3 \right)^2}{ 25 } = 1 $$ | 1 |
| 993 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 36 } + \dfrac{ \left( y + 1 \right)^2}{ 9 } = 1 $$ | 1 |
| 994 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 4 } + \dfrac{ \left( y - 3 \right)^2}{ 9 } = 1 $$ | 1 |
| 995 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 49 } + \dfrac{ y^2}{ 25 } = 1 $$ | 1 |
| 996 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 25 } + \dfrac{ y^2}{ 4 } = 1 $$ | 1 |
| 997 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 4 } + \dfrac{ y^2}{ 1 } = 1 $$ | 1 |
| 998 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 4 } + \dfrac{ \left( y + 2 \right)^2}{ 9 } = 1 $$ | 1 |
| 999 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 5 } + \dfrac{ \left( y - 3 \right)^2}{ 4 } = 1 $$ | 1 |
| 1000 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 25 } + \dfrac{ \left( y + 1 \right)^2}{ 9 } = 1 $$ | 1 |