Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
• Solid figures
• Cube, cuboid and Prism
• Hexagonal prism

# Hexagonal prism

ans:
syntax error
C
DEL
ANS
±
(
)
÷
×
7
8
9
4
5
6
+
1
2
3
=
0
.
auto next question
calculator
•  Question 1: 1 pts Find the volume of the hexagonal prism shown on the picture .
 $V=\dfrac{1660}{3}cm^{3}$ $V=840cm^{3}$ $V=2500cm^{3}$ $V=1660cm^{3}$
•  Question 2: 1 pts Which expression can be used to find the area of the hexagonal prism shown on the picture .
 $A=\left(2\cdot 27\sqrt{3}+4\cdot 3\sqrt{2}\cdot 4\right)cm^{2}$ $A=\left(2\cdot 27\sqrt{3}+3\cdot 3\sqrt{2}\cdot 4\right)cm^{2}$ $A=\left( 27\sqrt{3}+6\cdot 3\sqrt{2}\cdot 4\right)cm^{2}$ $A=\left(2\cdot 27\sqrt{3}+6\cdot 3\sqrt{2}\cdot 4\right)cm^{2}$
•  Question 3: 1 pts Is the following expression true or false. $$A=\left(6\cdot \dfrac{3^{2}\sqrt{3}}{4}\cdot 4\right)cm^{2}$$
•  Question 4: 1 pts If the area of total lateral surface is $504cm^{2}$, and the height of prism is $7cm$ find the surface area of the prism shown on the picture.
 $A=\left( 6\cdot\dfrac{144\sqrt{3}}{4}+504\right)cm^{2}$ $A=\left(2\cdot 6\cdot\dfrac{144\sqrt{3}}{4}+504\right)cm^{2}$ $A=\left(2\cdot 3\cdot\dfrac{144\sqrt{3}}{4}+504\right)cm^{2}$ $A=\left(2\cdot 504+3\cdot\dfrac{144\sqrt{3}}{4}\right)cm^{2}$
•  Question 5: 2 pts Find the area of the hexagonal prism shown on the picture .
 $A=\left(2\cdot 6\cdot14\cdot3 +6\cdot\dfrac{196\sqrt{3}}{4}\right)cm^{2}$ $A=\left(2\cdot 6\cdot\dfrac{196\sqrt{3}}{4}+6\cdot14\cdot3\right)cm^{2}$ $A=\left( 6\cdot\dfrac{196\sqrt{3}}{4}+6\cdot14\cdot3\right)cm^{2}$
•  Question 6: 2 pts Find the volume of the hexagonal prism shown on the picture .
 $V=196\sqrt{3}cm^{3}$ $V=216\sqrt{3}cm^{3}$ $V=288\sqrt{3}cm^{3}$ $V=343\sqrt{3}cm^{3}$
•  Question 7: 2 pts Find the length of missing diagonal of the hexagonal prism shown on the picture (the length of base edges is $12cm,$ and the height is $10cm$).
Diagonal$=$
•  Question 8: 2 pts The volume of a regular hexagonal prism is $81\sqrt{3}cm^{2}.$ Find the length of base edges of that prism if a height of that prism is twice the length of its base edges.
 $7cm$ $5cm$ $4cm$ $3cm$
•  Question 9: 3 pts Find the length of the base edge of the hexagonal prism shown on the picture. The volume of that prism is $192\sqrt{3} cm^{3}$.
$a=$
•  Question 10: 3 pts Find the area of the base of the hexagonal prism shown on the picture. The total surface area of that hexagonal prism is $96\sqrt{3}cm^{2}.$
 $18\sqrt{3}cm^{2}$ $36\sqrt{3}cm^{2}$ $48\sqrt{3}cm^{2}$
•  Question 11: 3 pts Find the volume of the hexagonal prism shown on the picture .
$V=$