Triangle in 2D
(the database of solved problems)
All the problems and solutions shown below were generated using the Triangle Calculator.
| ID |
Problem |
Count |
| 1251 | Find the incenter of triangle $A=\left(5,~-1\right)$ $B=\left(3,~-2\right)$ $C=\left(0,~-1\right)$. | 2 |
| 1252 | Find the circumcenter of triangle $A=\left(5,~-1\right)$ $B=\left(3,~-2\right)$ $C=\left(0,~-1\right)$. | 2 |
| 1253 | Find the incenter of triangle $A=\left(1,~2\right)$ $B=\left(3,~-2\right)$ $C=\left(5,~6\right)$. | 2 |
| 1254 | Find the circumcenter of triangle $A=\left(1,~2\right)$ $B=\left(3,~-2\right)$ $C=\left(5,~6\right)$. | 2 |
| 1255 | Find the altitudes of triangle $A=\left(1,~2\right)$ $B=\left(3,~-2\right)$ $C=\left(5,~6\right)$. | 2 |
| 1256 | Find the area of triangle $A=\left(-3,~1\right)$ $B=\left(1,~2\right)$ $C=\left(-3,~4\right)$. | 2 |
| 1257 | Find the circumcenter of triangle $A=\left(-3,~1\right)$ $B=\left(1,~2\right)$ $C=\left(-3,~4\right)$. | 2 |
| 1258 | Find the circumcenter of triangle $A=\left(2,~2\right)$ $B=\left(2,~-2\right)$ $C=\left(6,~-2\right)$. | 2 |
| 1259 | Find the circumcenter of triangle $A=\left(6,~4\right)$ $B=\left(6,~2\right)$ $C=\left(10,~2\right)$. | 2 |
| 1260 | Find the area of triangle $A=\left(1,~-2\right)$ $B=\left(5,~4\right)$ $C=\left(-2,~0\right)$. | 2 |
| 1261 | Find the circumcenter of triangle $A=\left(1,~-2\right)$ $B=\left(5,~4\right)$ $C=\left(-2,~0\right)$. | 2 |
| 1262 | Find the altitudes of triangle $A=\left(1,~-2\right)$ $B=\left(5,~4\right)$ $C=\left(-2,~0\right)$. | 2 |
| 1263 | Find the area of triangle $A=\left(-2,~5\right)$ $B=\left(-6,~1\right)$ $C=\left(0,~3\right)$. | 2 |
| 1264 | Find the orthocenter of triangle $A=\left(-2,~5\right)$ $B=\left(-6,~1\right)$ $C=\left(0,~3\right)$. | 2 |
| 1265 | Find the circumcenter of triangle $A=\left(-2,~5\right)$ $B=\left(-6,~1\right)$ $C=\left(0,~3\right)$. | 2 |
| 1266 | Find the medians of triangle $A=\left(-2,~5\right)$ $B=\left(-6,~1\right)$ $C=\left(0,~3\right)$. | 2 |
| 1267 | Find the medians of triangle $A=\left(-2,~1\right)$ $B=\left(3,~1\right)$ $C=\left(1,~5\right)$. | 2 |
| 1268 | Find the altitudes of triangle $A=\left(-2,~1\right)$ $B=\left(3,~1\right)$ $C=\left(1,~5\right)$. | 2 |
| 1269 | Find the area of triangle $A=\left(3,~3\right)$ $B=\left(-5,~6\right)$ $C=\left(-11,~-10\right)$. | 2 |
| 1270 | Find the area of triangle $A=\left(6,~-1\right)$ $B=\left(-8,~-5\right)$ $C=\left(-3,~4\right)$. | 2 |
| 1271 | Find the altitudes of triangle $A=\left(-1,~0\right)$ $B=\left(0,~-2\right)$ $C=\left(4,~1\right)$. | 2 |
| 1272 | Find the area of triangle $A=\left(-1,~0\right)$ $B=\left(0,~-2\right)$ $C=\left(4,~1\right)$. | 2 |
| 1273 | Find the medians of triangle $A=\left(-5,~-2\right)$ $B=\left(1,~-5\right)$ $C=\left(6,~5\right)$. | 2 |
| 1274 | Find the centroid of triangle $A=\left(-9,~2\right)$ $B=\left(5,~-3\right)$ $C=\left(-11,~-12\right)$. | 2 |
| 1275 | Find the altitudes of triangle $A=\left(2,~3\right)$ $B=\left(3,~7\right)$ $C=\left(6,~-5\right)$. | 2 |
| 1276 | Find the incenter of triangle $A=\left(1,~8\right)$ $B=\left(3,~2\right)$ $C=\left(7,~5\right)$. | 2 |
| 1277 | Find the area of triangle $A=\left(25,~10\right)$ $B=\left(25,~-5\right)$ $C=\left(-5,~-5\right)$. | 2 |
| 1278 | Find the area of triangle $A=\left(-5,~10\right)$ $B=\left(0,~-3\right)$ $C=\left(0,~6\right)$. | 2 |
| 1279 | Find the area of triangle $A=\left(-3,~2\right)$ $B=\left(-3,~-4\right)$ $C=\left(2,~-4\right)$. | 2 |
| 1280 | Find the incenter of triangle $A=\left(2,~5\right)$ $B=\left(3,~\dfrac{ 1 }{ 2 }\right)$ $C=\left(\dfrac{ 15 }{ 2 },~\dfrac{ 9 }{ 2 }\right)$. | 2 |
| 1281 | Find the incenter of triangle $A=\left(2,~5\right)$ $B=\left(3,~\dfrac{ 1 }{ 2 }\right)$ $C=\left(\dfrac{ 15 }{ 2 },~7\right)$. | 2 |
| 1282 | Find the centroid of triangle $A=\left(1,~3\right)$ $B=\left(-2,~-2\right)$ $C=\left(5,~-1\right)$. | 2 |
| 1283 | Find the area of triangle $A=\left(2,~3\right)$ $B=\left(5,~4\right)$ $C=\left(3,~7\right)$. | 2 |
| 1284 | Find the altitudes of triangle $A=\left(6,~5\right)$ $B=\left(-3,~5\right)$ $C=\left(-3,~-2\right)$. | 2 |
| 1285 | Find the incenter of triangle $A=\left(2,~3\right)$ $B=\left(5,~4\right)$ $C=\left(3,~7\right)$. | 2 |
| 1286 | Find the area of triangle $A=\left(0,~0\right)$ $B=\left(2,~3\right)$ $C=\left(8,~0\right)$. | 2 |
| 1287 | Find the area of triangle $A=\left(4,~5\right)$ $B=\left(-3,~2\right)$ $C=\left(5,~-2\right)$. | 2 |
| 1288 | Find the area of triangle $A=\left(-7,~-6\right)$ $B=\left(2,~-4\right)$ $C=\left(0,~0\right)$. | 2 |
| 1289 | Find the circumcenter of triangle $A=\left(0,~0\right)$ $B=\left(0,~60\right)$ $C=\left(\sqrt{ 1300 },~30\right)$. | 2 |
| 1290 | Find the area of triangle $A=\left(-5,~8\right)$ $B=\left(-9,~-4\right)$ $C=\left(-1,~-4\right)$. | 2 |
| 1291 | Find the area of triangle $A=\left(-4,~-5\right)$ $B=\left(3,~10\right)$ $C=\left(6,~12\right)$. | 2 |
| 1292 | Find the altitudes of triangle $A=\left(-4,~-5\right)$ $B=\left(3,~10\right)$ $C=\left(6,~12\right)$. | 2 |
| 1293 | Find the medians of triangle $A=\left(4,~7\right)$ $B=\left(-3,~3\right)$ $C=\left(11,~-1\right)$. | 2 |
| 1294 | Find the medians of triangle $\left(4,~0\right)$ $\left(-4,~16\right)$ $\left(18,~20\right)$. | 2 |
| 1295 | Find the orthocenter of triangle $\left(-90,~28\right)$ $\left(0,~-35\right)$ $\left(125,~20\right)$. | 2 |
| 1296 | Find the circumcenter of triangle $\left(4,~3\right)$ $\left(2,~-2\right)$ $\left(7,~-1\right)$. | 2 |
| 1297 | Find the area of triangle $\left(-2,~-1\right)$ $\left(3,~-1\right)$ $\left(2,~2\right)$. | 2 |
| 1298 | Find the medians of triangle $\left(0,~0\right)$ $\left(6,~12\right)$ $\left(18,~0\right)$. | 2 |
| 1299 | Find the centroid of triangle $\left(0,~0\right)$ $\left(6,~12\right)$ $\left(18,~0\right)$. | 2 |
| 1300 | Find the area of triangle $\left(-1,~0\right)$ $\left(0,~9\right)$ $\left(9,~1\right)$. | 2 |