Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 6151 | $$ \displaystyle\int^{1}_{0} 3{x}^{2}\, \mathrm d x $$ | 1 |
| 6152 | $$ \displaystyle\int 3{x}^{2}\, \mathrm d x $$ | 1 |
| 6153 | $$ x $$ | 1 |
| 6154 | $$ \displaystyle\int \dfrac{5}{x}\, \mathrm d x $$ | 1 |
| 6155 | $$ \displaystyle\int \dfrac{{x}^{2}-3x+2}{x+1}\, \mathrm d x $$ | 1 |
| 6156 | $$ $$ | 1 |
| 6157 | $$ $$ | 1 |
| 6158 | $$ \displaystyle\int 0.2{\cdot}\cos\left(x\right)+1.8\, \mathrm d x $$ | 1 |
| 6159 | $$ \displaystyle\int 3{x}^{3}-2x+1\, \mathrm d x $$ | 1 |
| 6160 | $$ \displaystyle\int^{10}_{0} 3{x}^{3}-2x+1\, \mathrm d x $$ | 1 |
| 6161 | $$ \displaystyle\int^{+1}_{----1} 2x+3\, \mathrm d x $$ | 1 |
| 6162 | $$ \displaystyle\int^{3}_{0} 2x{\cdot}\sqrt{x+5}\, \mathrm d x $$ | 1 |
| 6163 | $$ $$ | 1 |
| 6164 | $$ $$ | 1 |
| 6165 | $$ $$ | 1 |
| 6166 | $$ $$ | 1 |
| 6167 | $$ $$ | 1 |
| 6168 | $$ $$ | 1 |
| 6169 | $$ $$ | 1 |
| 6170 | $$ $$ | 1 |
| 6171 | $$ $$ | 1 |
| 6172 | $$ $$ | 1 |
| 6173 | $$ $$ | 1 |
| 6174 | $$ $$ | 1 |
| 6175 | $$ \displaystyle\int \dfrac{{x}^{3}}{x+2}\, \mathrm d x $$ | 1 |
| 6176 | $$ \int \pi \, d\,x $$ | 1 |
| 6177 | $$ \displaystyle\int \dfrac{1}{\sqrt{25{x}^{2}+2}}\, \mathrm d x $$ | 1 |
| 6178 | $$ \displaystyle\int^{2}_{0} \left({x}^{3}{\cdot}\cos\left(\dfrac{x}{2}\right)+\dfrac{1}{2}\right){\cdot}\sqrt{4-{x}^{2}}\, \mathrm d x $$ | 1 |
| 6179 | $$ \displaystyle\int^{2}_{----2} \left({x}^{3}{\cdot}\cos\left(\dfrac{x}{2}\right)+\dfrac{1}{2}\right){\cdot}sq{\cdot}\sqrt{t}{\cdot}\left(4-{x}^{2}\right)\, \mathrm d x $$ | 1 |
| 6180 | $$ \displaystyle\int^{2}_{----2} \left({x}^{3}{\cdot}\cos\left(\dfrac{x}{2}\right)+\dfrac{1}{2}\right){\cdot}\sqrt{4-{x}^{2}}\, \mathrm d x $$ | 1 |
| 6181 | $$ \displaystyle\int^{2}_{----2} \left({x}^{3}{\cdot}\cos\left(\dfrac{x}{2}\right)+\dfrac{1}{2}\right){\cdot}\sqrt{4-{x}^{2}}\, \mathrm d x $$ | 1 |
| 6182 | $$ \displaystyle\int sqsqsq{\cdot}\sqrt{t}{\cdot}tt{\cdot}\dfrac{{x}^{2}-ax}{{x}^{2}-hx-c}\, \mathrm d x $$ | 1 |
| 6183 | $$ \displaystyle\int \sqrt{\dfrac{{x}^{2}-ax}{{x}^{2}-hx-c}}\, \mathrm d x $$ | 1 |
| 6184 | $$ \displaystyle\int \dfrac{2{x}^{4}+4}{{\left(x{\cdot}\left({x}^{2}+1\right)\right)}^{2}}\, \mathrm d x $$ | 1 |
| 6185 | $$ \displaystyle\int {\left(2+\cos\left(x\right)\right)}^{0.5}\, \mathrm d x $$ | 1 |
| 6186 | $$ $$ | 1 |
| 6187 | $$ $$ | 1 |
| 6188 | $$ \displaystyle\int^{2}_{--1} {x}^{4}\, \mathrm d x $$ | 1 |
| 6189 | $$ \displaystyle\int^{8}_{1} \sqrt{\dfrac{2}{x}}\, \mathrm d x $$ | 1 |
| 6190 | $$ \displaystyle\int \dfrac{1}{{x}^{3}{\cdot}\left(\sqrt{{x}^{2}}-1\right)}\, \mathrm d x $$ | 1 |
| 6191 | $$ \displaystyle\int^{3}_{----3} \dfrac{1}{9+{x}^{2}}\, \mathrm d x $$ | 1 |
| 6192 | $$ \displaystyle\int {\left(2{\cdot}\sin\left(x\right){\cdot}\left(1-\cos\left(x\right)\right)\right)}^{2}\, \mathrm d x $$ | 1 |
| 6193 | $$ \displaystyle\int^{0}_{9} {\left(\sec\left(x\right)\right)}^{3}\, \mathrm d x $$ | 1 |
| 6194 | $$ \displaystyle\int {\left(\sec\left(x\right)\right)}^{3}\, \mathrm d x $$ | 1 |
| 6195 | $$ \displaystyle\int 5{\cdot}\cos\left(60{\pi}{\cdot}x\right)\, \mathrm d x $$ | 1 |
| 6196 | $$ $$ | 1 |
| 6197 | $$ \displaystyle\int -9x{\cdot}\sin\left(4x\right)\, \mathrm d x $$ | 1 |
| 6198 | $$ \displaystyle\int^{\infty}_{1} \dfrac{{x}^{2}}{{\left({x}^{3}+2\right)}^{2}}\, \mathrm d x $$ | 1 |
| 6199 | $$ \displaystyle\int^{1}_{--\infty} {x}^{2}{\cdot}2{x}^{{x}^{3}}\, \mathrm d x $$ | 1 |
| 6200 | $$ \displaystyle\int \mathrm{e}^{-t}\, \mathrm d x $$ | 1 |