Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 6101 | $$ $$ | 1 |
| 6102 | $$ \displaystyle\int \dfrac{x}{{x}^{2}+1}\, \mathrm d x $$ | 1 |
| 6103 | $$ x $$ | 1 |
| 6104 | $$ \displaystyle\int {x}^{8}-126\, \mathrm d x $$ | 1 |
| 6105 | $$ \displaystyle\int \ln\left(4-\sin\left(x\right)\right)\, \mathrm d x $$ | 1 |
| 6106 | $$ \displaystyle\int^{\pi}_{0} \dfrac{x{\cdot}\sin\left(x\right)}{1+{\left(\cos\left(x\right)\right)}^{2}}\, \mathrm d x $$ | 1 |
| 6107 | $$ \displaystyle\int \dfrac{4}{100+4x}\, \mathrm d x $$ | 1 |
| 6108 | $$ \displaystyle\int \dfrac{1}{\left(1-x\right){\cdot}\left(0.6-0.4x\right)}\, \mathrm d x $$ | 1 |
| 6109 | $$ \displaystyle\int {2}^{-x}\, \mathrm d x $$ | 1 |
| 6110 | $$ \displaystyle\int^{0}_{1} \sin\left(x\right){\cdot}\cos\left(x\right)\, \mathrm d x $$ | 1 |
| 6111 | $$ \displaystyle\int^{1}_{0} \sin\left(x\right){\cdot}\cos\left(x\right)\, \mathrm d x $$ | 1 |
| 6112 | $$ \displaystyle\int^{2}_{1} {\left({x}^{2}-1\right)}^{\frac{1}{2}}\, \mathrm d x $$ | 1 |
| 6113 | $$ \displaystyle\int 0.62\, \mathrm d x $$ | 1 |
| 6114 | $$ \displaystyle\int^{0.77}_{0.50} 0.62\, \mathrm d x $$ | 1 |
| 6115 | $$ \displaystyle\int 1.12\, \mathrm d x $$ | 1 |
| 6116 | $$ \displaystyle\int -0.478\, \mathrm d x $$ | 1 |
| 6117 | $$ \displaystyle\int 0.62\, \mathrm d x $$ | 1 |
| 6118 | $$ \displaystyle\int \dfrac{1}{1+{\left(\cos\left(x\right)\right)}^{3}}\, \mathrm d x $$ | 1 |
| 6119 | $$ \displaystyle\int x+1\, \mathrm d x $$ | 1 |
| 6120 | $$ \displaystyle\int x+1\, \mathrm d x $$ | 1 |
| 6121 | $$ \displaystyle\int^{0}_{-1} x+1\, \mathrm d x $$ | 1 |
| 6122 | $$ \displaystyle\int^{0}_{-1} x+1\, \mathrm d x $$ | 1 |
| 6123 | $$ \displaystyle\int \dfrac{10{\mathrm{e}}^{x}+3{\mathrm{e}}^{-x}}{10{\mathrm{e}}^{x}-3{\mathrm{e}}^{-x}}\, \mathrm d x $$ | 1 |
| 6124 | $$ \displaystyle\int^{\pi/2}_{0} {\left(\cos\left(x\right)\right)}^{6}\, \mathrm d x $$ | 1 |
| 6125 | $$ $$ | 1 |
| 6126 | $$ $$ | 1 |
| 6127 | $$ $$ | 1 |
| 6128 | $$ \displaystyle\int x\, \mathrm d x $$ | 1 |
| 6129 | $$ \displaystyle\int^{2}_{0} x\, \mathrm d x $$ | 1 |
| 6130 | $$ \displaystyle\int 10+2{t}^{2}\, \mathrm d x $$ | 1 |
| 6131 | $$ \displaystyle\int 1+\dfrac{x}{1}-x\, \mathrm d x $$ | 1 |
| 6132 | $$ \displaystyle\int \dfrac{1}{\sqrt{2{\pi}}}{\cdot}\dfrac{1}{{x}^{4}+5{x}^{2}+4}{\cdot}{\mathrm{e}}^{i{\cdot}xa}\, \mathrm d x $$ | 1 |
| 6133 | $$ \displaystyle\int \dfrac{1}{s}{\cdot}q{\cdot}\sqrt{t}{\cdot}2{\pi}{\cdot}\dfrac{1}{{x}^{4}+5{x}^{2}+4}{\cdot}{\mathrm{e}}^{i{\cdot}x}\, \mathrm d x $$ | 1 |
| 6134 | $$ \displaystyle\int^{e^3}_{1} {x}^{4}{\cdot}\ln\left(x\right)\, \mathrm d x $$ | 1 |
| 6135 | $$ \displaystyle\int -c{x}^{-1}\, \mathrm d x $$ | 1 |
| 6136 | $$ \displaystyle\int -2{x}^{-1}\, \mathrm d x $$ | 1 |
| 6137 | $$ $$ | 1 |
| 6138 | $$ \displaystyle\int \dfrac{8}{5x+4}\, \mathrm d x $$ | 1 |
| 6139 | $$ \displaystyle\int^{3}_{1} \left(x-6\right){\cdot}{\left(x+2\right)}^{\frac{1}{7}}\, \mathrm d x $$ | 1 |
| 6140 | $$ \displaystyle\int \left(x-8\right){\cdot}{x}^{\frac{7}{2}}\, \mathrm d x $$ | 1 |
| 6141 | $$ \displaystyle\int \sqrt{25-{x}^{2}}\, \mathrm d x $$ | 1 |
| 6142 | $$ \displaystyle\int {x}^{3}{\cdot}{\left({x}^{2}+27\right)}^{0.5}\, \mathrm d x $$ | 1 |
| 6143 | $$ \displaystyle\int \dfrac{6x}{6x+2}\, \mathrm d x $$ | 1 |
| 6144 | $$ \displaystyle\int \cos\left(-7x\right)\, \mathrm d x $$ | 1 |
| 6145 | $$ \displaystyle\int^{15}_{0.5} x{\cdot}\cos\left(2x\right)\, \mathrm d x $$ | 1 |
| 6146 | $$ \displaystyle\int^{1.5}_{0.5} x{\cdot}\cos\left(2x\right)\, \mathrm d x $$ | 1 |
| 6147 | $$ \displaystyle\int \dfrac{1}{2}{\cdot}\left(x-3\right)+\dfrac{3}{2}-x\, \mathrm d x $$ | 1 |
| 6148 | $$ \displaystyle\int \dfrac{2{\cdot}\sqrt{t}}{\sqrt{t}}\, \mathrm d x $$ | 1 |
| 6149 | $$ \displaystyle\int^{1}_{0} {x}^{\frac{1}{x}}\, \mathrm d x $$ | 1 |
| 6150 | $$ \displaystyle\int^{1}_{0} {x}^{x}\, \mathrm d x $$ | 1 |