Ellipse
(the database of solved problems)
All the problems and solutions shown below were generated using the Ellipse Calculator.
| ID |
Problem |
Count |
| 151 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 9 \right)^2}{ \frac{ 1 }{ 10 } } + \dfrac{ \left( y - 1 \right)^2}{ 5 } = 1 $$ | 4 |
| 152 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + \frac{ 7 }{ 2 } \right)^2}{ \frac{ 11 }{ 2 } } + \dfrac{ \left( y - 2 \right)^2}{ 3 } = 1 $$ | 4 |
| 153 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 16 } + \dfrac{ y^2}{ 25 } = 1 $$ | 4 |
| 154 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 1 } + \dfrac{ \left( y + 2 \right)^2}{ 5 } = 1 $$ | 4 |
| 155 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 6 } + \dfrac{ y^2}{ \frac{ 267 }{ 100 } } = 1 $$ | 4 |
| 156 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 12 \right)^2}{ 10 } + \dfrac{ \left( y - 10 \right)^2}{ 5 } = 1 $$ | 4 |
| 157 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 4 } + \dfrac{ \left( y - 2 \right)^2}{ 9 } = 1 $$ | 4 |
| 158 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 169 } + \dfrac{ y^2}{ 25 } = 1 $$ | 4 |
| 159 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 64 } + \dfrac{ \left( y + 4 \right)^2}{ 25 } = 1 $$ | 4 |
| 160 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 9x^2 + 4y^2 = 36 $$ | 4 |
| 161 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 15 } + \dfrac{ y^2}{ 5 } = 1 $$ | 4 |
| 162 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 4 \right)^2}{ 4 } + \dfrac{ \left( y + 2 \right)^2}{ 9 } = 1 $$ | 4 |
| 163 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 36 } + \dfrac{ \left( y - 3 \right)^2}{ 25 } = 1 $$ | 4 |
| 164 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 9x^2 + y^2 = 81 $$ | 4 |
| 165 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 9 } + \dfrac{ \left( y - 3 \right)^2}{ 16 } = 1 $$ | 4 |
| 166 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 91 \left( x + 1 \right)^2}{ 1 } + \dfrac{ \left( y + 3 \right)^2}{ 9 } = 1 $$ | 4 |
| 167 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 9 } + \dfrac{ \left( y + 4 \right)^2}{ 4 } = 1 $$ | 4 |
| 168 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 25 } + \dfrac{ \left( y - 5 \right)^2}{ 16 } = 1 $$ | 4 |
| 169 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 9 } + \dfrac{ \left( y - 1 \right)^2}{ 4 } = 1 $$ | 4 |
| 170 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 4 } + \dfrac{ \left( y - 1 \right)^2}{ 25 } = 1 $$ | 4 |
| 171 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 1 } + \dfrac{ \left( y + 3 \right)^2}{ 9 } = 1 $$ | 4 |
| 172 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 8 \right)^2}{ 16 } + \dfrac{ \left( y - 5 \right)^2}{ 36 } = 1 $$ | 4 |
| 173 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 5 } + \dfrac{ \left( y + 1 \right)^2}{ 9 } = 1 $$ | 4 |
| 174 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 36 \left( x + 1 \right)^2}{ 1 } + \dfrac{ \left( y - 8 \right)^2}{ 2 } = 1 $$ | 4 |
| 175 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 25 } + \dfrac{ \left( y - 2 \right)^2}{ 4 } = 1 $$ | 4 |
| 176 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 9 } + \dfrac{ \left( y - 8 \right)^2}{ 25 } = 1 $$ | 4 |
| 177 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 10 \right)^2}{ 175 } + \dfrac{ \left( y + 2 \right)^2}{ 15 } = 1 $$ | 4 |
| 178 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 18 } + \dfrac{ y^2}{ 10 } = 1 $$ | 4 |
| 179 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 400 } + \dfrac{ y^2}{ 256 } = 1 $$ | 4 |
| 180 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 900 } + \dfrac{ y^2}{ 500 } = 1 $$ | 4 |
| 181 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 2350 } + \dfrac{ y^2}{ 1550 } = 1 $$ | 4 |
| 182 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 16 } + \dfrac{ y^2}{ 1 } = 1 $$ | 4 |
| 183 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \sqrt{ 2 } } + \dfrac{ y^2}{ 1 } = 1 $$ | 4 |
| 184 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 4x^2 + 9y^2 = 11 $$ | 4 |
| 185 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 25 } + \dfrac{ \left( y + 2 \right)^2}{ 9 } = 1 $$ | 4 |
| 186 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 16 } + \dfrac{ \left( y - 2 \right)^2}{ 25 } = 1 $$ | 4 |
| 187 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 1 } + \dfrac{ \left( y + 1 \right)^2}{ \frac{ 1 }{ 5 } } = 1 $$ | 4 |
| 188 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 64 } + \dfrac{ \left( y - 5 \right)^2}{ 100 } = 1 $$ | 4 |
| 189 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 12 } + \dfrac{ \left( y + 4 \right)^2}{ 36 } = 1 $$ | 4 |
| 190 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 40 } + \dfrac{ y^2}{ 24 } = 1 $$ | 4 |
| 191 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 49 } + \dfrac{ \left( y - 4 \right)^2}{ 9 } = 1 $$ | 4 |
| 192 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 9 } + \dfrac{ y^2}{ 49 } = 1 $$ | 4 |
| 193 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 4x^2 + 7y^2 = 1 $$ | 4 |
| 194 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ \frac{ 96 }{ 5 } } + \dfrac{ \left( y - \frac{ 49 }{ 10 } \right)^2}{ 7 } = 1 $$ | 4 |
| 195 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 4 } + \dfrac{ y^2}{ 81 } = 1 $$ | 4 |
| 196 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 16 } + \dfrac{ y^2}{ 20 } = 1 $$ | 4 |
| 197 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 4 \right)^2}{ 36 } + \dfrac{ y^2}{ 20 } = 1 $$ | 4 |
| 198 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 24 } + \dfrac{ \left( y - 5 \right)^2}{ 49 } = 1 $$ | 4 |
| 199 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 9 } + \dfrac{ \left( y + 2 \right)^2}{ 16 } = 1 $$ | 4 |
| 200 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 16 } + \dfrac{ y^2}{ 7 } = 1 $$ | 4 |