Ellipse
(the database of solved problems)
All the problems and solutions shown below were generated using the Ellipse Calculator.
| ID |
Problem |
Count |
| 851 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 1 } + \dfrac{ y^2}{ 4 } = 1 $$ | 1 |
| 852 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 2 } + \dfrac{ y^2}{ 1 } = 1 $$ | 1 |
| 853 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 2 } + \dfrac{ y^2}{ 4 } = 1 $$ | 1 |
| 854 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 2 } + \dfrac{ y^2}{ 4 } = 1 $$ | 1 |
| 855 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 81 } + \dfrac{ y^2}{ 256 } = 1 $$ | 1 |
| 856 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 55 } + \dfrac{ y^2}{ 200 } = 1 $$ | 1 |
| 857 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 100 } + \dfrac{ y^2}{ 200 } = 1 $$ | 1 |
| 858 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 25 \left( x - 1 \right)^2}{ 1 } + \dfrac{ 4 \left( y + 1 \right)^2}{ 1 } = 1 $$ | 1 |
| 859 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 25x^2 + 4y^2 = 71 $$ | 1 |
| 860 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 25 \left( x - 1 \right)^2}{ 4 } + \dfrac{ 4 \left( y + 1 \right)^2}{ 25 } = 1 $$ | 1 |
| 861 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 144 } + \dfrac{ \left( y + 6 \right)^2}{ 169 } = 1 $$ | 1 |
| 862 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 1 } + \dfrac{ \left( y - 1 \right)^2}{ 4 } = 1 $$ | 1 |
| 863 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 25 } + \dfrac{ \left( y + 6 \right)^2}{ 49 } = 1 $$ | 1 |
| 864 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - \frac{ 789 }{ 100 } \right)^2}{ \frac{ 3 }{ 250 } } + \dfrac{ \left( y - \frac{ 199 }{ 20 } \right)^2}{ \frac{ 17 }{ 1000 } } = 1 $$ | 1 |
| 865 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \frac{ 17 }{ 2 } } + \dfrac{ y^2}{ 7 } = 1 $$ | 1 |
| 866 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \frac{ 17 }{ 2 }x^2 + 7y^2 = 36 $$ | 1 |
| 867 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \frac{ 17 }{ 2 }x^2 + 7y^2 = 1 $$ | 1 |
| 868 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 16 } + \dfrac{ \left( y - 1 \right)^2}{ 25 } = 1 $$ | 1 |
| 869 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 25 } + \dfrac{ \left( y + 5 \right)^2}{ 16 } = 1 $$ | 1 |
| 870 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 9x^2 + 4y^2 = 36 $$ | 1 |
| 871 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 12 } + \dfrac{ \left( y + 3 \right)^2}{ 36 } = 1 $$ | 1 |
| 872 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 4 \right)^2}{ 16 } + \dfrac{ \left( y - 2 \right)^2}{ 12 } = 1 $$ | 1 |
| 873 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 16 } + \dfrac{ \left( y + 4 \right)^2}{ 12 } = 1 $$ | 1 |
| 874 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 12 } + \dfrac{ y^2}{ 16 } = 1 $$ | 1 |
| 875 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 16 } + \dfrac{ y^2}{ 12 } = 1 $$ | 1 |
| 876 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 9x^2 + 16y^2 = 1 $$ | 1 |
| 877 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 7 \right)^2}{ 16 } + \dfrac{ \left( y + 4 \right)^2}{ 25 } = 1 $$ | 1 |
| 878 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 7 \right)^2}{ 16 } + \dfrac{ \left( y - 4 \right)^2}{ 25 } = 1 $$ | 1 |
| 879 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 27 } + \dfrac{ y^2}{ 36 } = 1 $$ | 1 |
| 880 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 4 } + \dfrac{ \left( y - 2 \right)^2}{ 9 } = 1 $$ | 1 |
| 881 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 25 } + \dfrac{ \left( y - 1 \right)^2}{ 16 } = 1 $$ | 1 |
| 882 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 9 \left( x - 1 \right)^2}{ 96 } + \dfrac{ 16 \left( y + 1 \right)^2}{ 96 } = 1 $$ | 1 |
| 883 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 72 } + \dfrac{ y^2}{ 36 } = 1 $$ | 1 |
| 884 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 6400 } + \dfrac{ y^2}{ 3600 } = 1 $$ | 1 |
| 885 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 6 \left( x + 7 \right)^2}{ 11 } + \dfrac{ 4 \left( y + 2 \right)^2}{ 1 } = 1 $$ | 1 |
| 886 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 6 \right)^2}{ 9 } + \dfrac{ \left( y + 2 \right)^2}{ 25 } = 1 $$ | 1 |
| 887 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 10 } + \dfrac{ y^2}{ 18 } = 1 $$ | 1 |
| 888 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 18 } + \dfrac{ y^2}{ 28 } = 1 $$ | 1 |
| 889 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 25 } + \dfrac{ \left( y + 4 \right)^2}{ 16 } = 1 $$ | 1 |
| 890 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 1 } + \dfrac{ \left( y - 1 \right)^2}{ 4 } = 1 $$ | 1 |
| 891 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 4 \right)^2}{ 81 } + \dfrac{ \left( y - 7 \right)^2}{ 9 } = 1 $$ | 1 |
| 892 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 9 } + \dfrac{ \left( y - 1 \right)^2}{ 36 } = 1 $$ | 1 |
| 893 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 49 } + \dfrac{ \left( y + 5 \right)^2}{ 1 } = 1 $$ | 1 |
| 894 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 3 } + \dfrac{ \left( y + 2 \right)^2}{ 5 } = 1 $$ | 1 |
| 895 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 43 \right)^2}{ 16 } + \dfrac{ \left( y - 2 \right)^2}{ 4 } = 1 $$ | 1 |
| 896 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 6 \right)^2}{ 49 } + \dfrac{ \left( y - 4 \right)^2}{ 16 } = 1 $$ | 1 |
| 897 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 16 } + \dfrac{ \left( y + 4 \right)^2}{ 25 } = 1 $$ | 1 |
| 898 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 20 } + \dfrac{ y^2}{ 8 } = 1 $$ | 1 |
| 899 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 25 } + \dfrac{ y^2}{ 22 } = 1 $$ | 1 |
| 900 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + \frac{ 32 }{ 5 } \right)^2}{ \frac{ 1 }{ 2 } } + \dfrac{ \left( y - \frac{ 11 }{ 5 } \right)^2}{ \frac{ 1 }{ 5 } } = 1 $$ | 1 |