Derivative
(the database of solved problems)
All the problems and solutions shown below were generated using the Derivative Calculator.
| ID |
Problem |
Count |
| 4101 | $ \dfrac{1}{3}{\cdot}{x}^{3}+\dfrac{5}{2}{\cdot}{x}^{2}+6x+25 $ | 1 |
| 4102 | $ \dfrac{\ln\left(2\right)}{5}{\cdot}x $ | 1 |
| 4103 | $ \sqrt{x}+1 $ | 1 |
| 4104 | $ \sqrt{x}+\dfrac{2x}{7}{\cdot}x-4{x}^{2} $ | 1 |
| 4105 | $ 3{\cdot}\sqrt{12}{\cdot}x+1 $ | 1 |
| 4106 | $ \sqrt{9t+1} $ | 1 |
| 4107 | $ 60{\cdot}\sqrt{x} $ | 1 |
| 4108 | $ 3x{\cdot}\ln\left(x\right) $ | 1 |
| 4109 | $ 3x{\cdot}\ln\left(4x\right) $ | 1 |
| 4110 | $ \left(x-4\right){\cdot}{\mathrm{e}}^{2x} $ | 1 |
| 4111 | $ y $ | 1 |
| 4112 | $ cub{\cdot}\mathrm{e}{\cdot}rootof{\cdot}\left(2+5x+5{x}^{2}+2{x}^{4}+7{x}^{5}\right) $ | 1 |
| 4113 | $ {x}^{2}+49\\\\\\\\\\\\\\\ $ | 1 |
| 4114 | $ \dfrac{\ln\left(x\right)}{\sin\left({\pi}{\cdot}x\right)} $ | 1 |
| 4115 | $ \dfrac{7+x+6{x}^{2}}{5+5{x}^{2}} $ | 1 |
| 4116 | $ 16-{\left(3x-5\right)}^{2} $ | 1 |
| 4117 | $ \, x \, $ | 1 |
| 4118 | $ 20000{x}^{-1.4} $ | 1 |
| 4119 | $ 0.09{\pi}{\cdot}{x}^{2}+\dfrac{36}{x} $ | 1 |
| 4120 | $ {\mathrm{e}}^{\sin\left(8x\right)} $ | 1 |
| 4121 | $ 2.7 $ | 1 |
| 4122 | $ 2.7x $ | 1 |
| 4123 | $ \dfrac{\dfrac{1}{2{\cdot}\left(x+h\right)}-\dfrac{1}{2x-3}}{h} $ | 1 |
| 4124 | $ \cos\left({\mathrm{e}}^{-{30}^{5}}\right) $ | 1 |
| 4125 | $ \, x \, $ | 1 |
| 4126 | $ \, x \, $ | 1 |
| 4127 | $ \, x \, $ | 1 |
| 4128 | $ \, x \, $ | 1 |
| 4129 | $ \, x \, $ | 1 |
| 4130 | $ \, x \, $ | 1 |
| 4131 | $ \, x \, $ | 1 |
| 4132 | $ h $ | 1 |
| 4133 | $ {\left(26-4x\right)}^{2} $ | 1 |
| 4134 | $ 8x-{\mathrm{e}}^{2x} $ | 1 |
| 4135 | $ \dfrac{{\left(x+4\right)}^{3}}{2} $ | 1 |
| 4136 | $ {\left(x+4\right)}^{\frac{3}{2}} $ | 1 |
| 4137 | $ {\mathrm{e}}^{49} $ | 1 |
| 4138 | $ {\left({x}^{2}+5\right)}^{3} $ | 1 |
| 4139 | $ ax{\cdot}\cos\left(3x\right) $ | 1 |
| 4140 | $ {x}^{2}{\cdot}\sqrt{2}{\cdot}x+1 $ | 1 |
| 4141 | $ \dfrac{d}{d}{\cdot}x{\cdot}\left(\dfrac{20}{\sin\left(t\right)}{\cdot}h{\cdot}\mathrm{e}{\cdot}ta+\dfrac{4}{\cos\left(t\right)}{\cdot}h{\cdot}\mathrm{e}{\cdot}ta\right) $ | 1 |
| 4142 | $ \, x \, $ | 1 |
| 4143 | $ \, x \, $ | 1 |
| 4144 | $ \, x \, $ | 1 |
| 4145 | $ \, x \, $ | 1 |
| 4146 | $ \, x \, $ | 1 |
| 4147 | $ \, x \, $ | 1 |
| 4148 | $ \, x \, $ | 1 |
| 4149 | $ \, x \, $ | 1 |
| 4150 | $ \, x \, $ | 1 |