Derivative
(the database of solved problems)
All the problems and solutions shown below were generated using the Derivative Calculator.
| ID |
Problem |
Count |
| 4051 | $ \, x \, $ | 1 |
| 4052 | $ \, x \, $ | 1 |
| 4053 | $ \, x \, $ | 1 |
| 4054 | $ \, x \, $ | 1 |
| 4055 | $ \, x \, $ | 1 |
| 4056 | $ \, x \, $ | 1 |
| 4057 | $ \, x \, $ | 1 |
| 4058 | $ {c}^{\frac{1}{2}}{\cdot}{x}^{\frac{1}{2}} $ | 1 |
| 4059 | $ \, x \, $ | 1 |
| 4060 | $ \, x \, $ | 1 |
| 4061 | $ \, x \, $ | 1 |
| 4062 | $ \, x \, $ | 1 |
| 4063 | $ {\left(27{y}^{-1}-3\right)}^{0.5} $ | 1 |
| 4064 | $ 70{\cdot}{1.5}^{-0.4} $ | 1 |
| 4065 | $ \sqrt{t}-3{t}^{2} $ | 1 |
| 4066 | $ {\mathrm{e}}^{\frac{1}{2}} $ | 1 |
| 4067 | $ \, x \, $ | 1 |
| 4068 | $ {\mathrm{e}}^{{x}^{2}} $ | 1 |
| 4069 | $ {0.5}^{1-n} $ | 1 |
| 4070 | $ \dfrac{\sqrt{1-{x}^{2}}}{x} $ | 1 |
| 4071 | $ \dfrac{\sqrt{1-{x}^{2}}}{x} $ | 1 |
| 4072 | $ \sqrt{5{x}^{2}+x+7} $ | 1 |
| 4073 | $ \ln\left(x\right)+4 $ | 1 |
| 4074 | $ \, x \, $ | 1 |
| 4075 | $ {x}^{3}-4x+5 $ | 1 |
| 4076 | $ 2{x}^{2}{\cdot}\ln\left({x}^{2}\right) $ | 1 |
| 4077 | $ \cos\left(x\right) $ | 1 |
| 4078 | $ 2{x}^{\sin\left(x\right)} $ | 1 |
| 4079 | $ \ln\left(3\right){\cdot}\left(4{x}^{2}+5x+2\right) $ | 1 |
| 4080 | $ {\left(-2x-2\right)}^{2}{\cdot}{\left(-3{x}^{2}-4x+3\right)}^{12} $ | 1 |
| 4081 | $ \dfrac{1}{\sqrt{\sin\left(x\right)}} $ | 1 |
| 4082 | $ {\left(\dfrac{{x}^{2}-2}{{x}^{2}+1}\right)}^{4} $ | 1 |
| 4083 | $ \left(3{x}^{2}+2\right){\cdot}{\left(5{x}^{3}+10x\right)}^{4} $ | 1 |
| 4084 | $ \, x \, $ | 1 |
| 4085 | $ \, x \, $ | 1 |
| 4086 | $ \, x \, $ | 1 |
| 4087 | $ \, x \, $ | 1 |
| 4088 | $ \, x \, $ | 1 |
| 4089 | $ \, x \, $ | 1 |
| 4090 | $ \, x \, $ | 1 |
| 4091 | $ \, x \, $ | 1 |
| 4092 | $ \, x \, $ | 1 |
| 4093 | $ \, x \, $ | 1 |
| 4094 | $ \, x \, $ | 1 |
| 4095 | $ \, x \, $ | 1 |
| 4096 | $ \, x \, $ | 1 |
| 4097 | $ \, x \, $ | 1 |
| 4098 | $ \dfrac{2}{\sqrt{x}} $ | 1 |
| 4099 | $ \left(2t+{\mathrm{e}}^{t}\right){\cdot}\left(5-\sqrt{t}\right) $ | 1 |
| 4100 | $ -\left(\dfrac{nx{\cdot}\left(l-x\right)}{2t}+\dfrac{hx}{l}\right) $ | 1 |