Derivative
(the database of solved problems)
All the problems and solutions shown below were generated using the Derivative Calculator.
| ID |
Problem |
Count |
| 101 | $ \dfrac{1}{12}{\cdot}{x}^{4}+x{\cdot}\cos\left(x\right) $ | 6 |
| 102 | $ \dfrac{{x}^{3}-4{x}^{2}+2x}{{x}^{2}+1} $ | 6 |
| 103 | $ \, x \, $ | 6 |
| 104 | $ \, x \, $ | 6 |
| 105 | $ \, x \, $ | 6 |
| 106 | $ {\left({x}^{2}-5x+8\right)}^{5} $ | 6 |
| 107 | $ \dfrac{{x}^{5}}{{\left(1-10x\right)}^{3}} $ | 6 |
| 108 | $ 900-(\dfrac{1500}{3x+2}) $ | 6 |
| 109 | $ \, x \, $ | 6 |
| 110 | $ -6{x}^{6}-4{x}^{4}+2 $ | 5 |
| 111 | $ 4{\cdot}\cos\left(\sin\left(x\right)\right) $ | 5 |
| 112 | $ \, x \, $ | 5 |
| 113 | $ x $ | 5 |
| 114 | $ \, x \, $ | 5 |
| 115 | $ -2{x}^{3}+5{x}^{2}-3x-3 $ | 5 |
| 116 | $ \sin\left(2\right){\cdot}\left({x}^{2}+2x+1\right) $ | 5 |
| 117 | $ {\left(\dfrac{x+6}{x+2}\right)}^{9} $ | 5 |
| 118 | $ {x}^{\frac{2}{3}} $ | 5 |
| 119 | $ \sin\left(x\right) $ | 5 |
| 120 | $ \, x \, $ | 5 |
| 121 | $ 1000 $ | 5 |
| 122 | $ \ln\left(\sin\left(x\right)\right) $ | 5 |
| 123 | $ 34 $ | 5 |
| 124 | $ {\left(\sqrt{x}\right)}^{3}-0.5x $ | 5 |
| 125 | $ \, x \, $ | 5 |
| 126 | $ 3{\cdot}\dfrac{1}{{x}^{3}} $ | 5 |
| 127 | $ \, x \, $ | 5 |
| 128 | $ {x}^{2}{\cdot}\ln\left(x\right) $ | 5 |
| 129 | $ 120+4q $ | 5 |
| 130 | $ {\left(3{x}^{2}+4\right)}^{3} $ | 5 |
| 131 | $ {\left(\sqrt{x}\right)}^{{\pi}}+4 $ | 5 |
| 132 | $ \left(2x-3\right){\cdot}{\mathrm{e}}^{-0.5x} $ | 5 |
| 133 | $ \dfrac{3}{\left(1-{x}^{2}\right){\cdot}\left(1-2{x}^{3}\right)} $ | 5 |
| 134 | $ \, x \, $ | 5 |
| 135 | $ {\mathrm{e}}^{t}{\cdot}\sin\left(t\right) $ | 5 |
| 136 | $ \csc\left(x\right) $ | 5 |
| 137 | $ \dfrac{4{\mathrm{e}}^{4x}}{{\mathrm{e}}^{8}{\cdot}\left({\mathrm{e}}^{16}-1\right)} $ | 5 |
| 138 | $ \left(3{x}^{3}-2x+5{x}^{2}\right){\cdot}\left(7-6x+12{x}^{4}\right) $ | 5 |
| 139 | $ \, x \, $ | 5 |
| 140 | $ {\left(3{x}^{2}+1\right)}^{0.5} $ | 5 |
| 141 | $ \, x \, $ | 5 |
| 142 | $ \, x \, $ | 5 |
| 143 | $ 56db{x}^{3} $ | 5 |
| 144 | $ \, x \, $ | 5 |
| 145 | $ \ln\left(x{\cdot}{\mathrm{e}}^{x}\right) $ | 5 |
| 146 | $ \, x \, $ | 5 |
| 147 | $ \, x \, $ | 5 |
| 148 | $ {\left(3{x}^{2}+4\right)}^{3} $ | 5 |
| 149 | $ {x}^{\frac{1}{3}} $ | 5 |
| 150 | $ 9x+7 $ | 5 |