Derivative
(the database of solved problems)
All the problems and solutions shown below were generated using the Derivative Calculator.
| ID |
Problem |
Count |
| 51 | $ 2x $ | 8 |
| 52 | $ \, x \, $ | 8 |
| 53 | $ \dfrac{{x}^{8}+12}{\sqrt{x}} $ | 8 |
| 54 | $ \sin\left(\color{orangered}{\square}\right) $ | 8 |
| 55 | $ \, x \, $ | 8 |
| 56 | $ \dfrac{{\left({x}^{2}+6\right)}^{2}}{2}{\cdot}x-7 $ | 8 |
| 57 | $ \dfrac{\tan\left(x\right)}{\cos\left(x\right)} $ | 8 |
| 58 | $ \dfrac{1}{x} $ | 8 |
| 59 | $ \, x \, $ | 8 |
| 60 | $ x $ | 8 |
| 61 | $ \, x \, $ | 8 |
| 62 | $ 4{x}^{2}-3 $ | 8 |
| 63 | $ \, x \, $ | 8 |
| 64 | $ \tan\left(2\right){\cdot}x+2x $ | 8 |
| 65 | $ \dfrac{3}{{x}^{6}} $ | 8 |
| 66 | $ {x}^{\frac{4}{3}}{\cdot}\ln\left(x\right) $ | 7 |
| 67 | $ 2{\pi}+\dfrac{3x}{\sqrt{5}} $ | 7 |
| 68 | $ \, x \, $ | 7 |
| 69 | $ {\left(\dfrac{4}{3}{\cdot}x\right)}^{2} $ | 7 |
| 70 | $ \cos\left({\left(\sin\left(x\right)\right)}^{2}\right)\right)}^{3}{\cdot}\tan\left({x}^{\frac{2}{3}} $ | 7 |
| 71 | $ 3v $ | 7 |
| 72 | $ \dfrac{{\left(7x+3\right)}^{6}}{{\left(4x+1\right)}^{4}} $ | 7 |
| 73 | $ {x}^{\frac{1}{2}} $ | 7 |
| 74 | $ {\left({x}^{15}+3{\cdot}\sqrt{x}\right)}^{\frac{1}{5}} $ | 7 |
| 75 | $ \, x \, $ | 7 |
| 76 | $ 50 $ | 6 |
| 77 | $ \sqrt{x}{\cdot}\left({x}^{2}+5\right) $ | 6 |
| 78 | $ {\mathrm{e}}^{3x}{\cdot}\sin\left(2x\right) $ | 6 |
| 79 | $ \, x \, $ | 6 |
| 80 | $ {\left({x}^{15}+3{\cdot}\sqrt{x}\right)}^{\frac{1}{5}} $ | 6 |
| 81 | $ \dfrac{1}{12}{\cdot}{x}^{4}+x{\cdot}\cos\left(x\right) $ | 6 |
| 82 | $ \, x \, $ | 6 |
| 83 | $ \, x \, $ | 6 |
| 84 | $ \dfrac{{x}^{2}-1}{x+1} $ | 6 |
| 85 | $ \, x \, $ | 6 |
| 86 | $ \ln\left(x\right) $ | 6 |
| 87 | $ \, x \, $ | 6 |
| 88 | $ \dfrac{{x}^{3}-4{x}^{2}+2x}{{x}^{2}+1} $ | 6 |
| 89 | $ \sqrt{7x+18} $ | 6 |
| 90 | $ 4x{\cdot}\left(\sin\left(x\right)+\cos\left(x\right)\right) $ | 6 |
| 91 | $ -0.10950021672{\cdot}\left(x-87.179452744\right){\cdot}\left(x-85\right)+20.8971868225 $ | 6 |
| 92 | $ \, x \, $ | 6 |
| 93 | $ 900-(\dfrac{1500}{3x+2}) $ | 6 |
| 94 | $ \, x \, $ | 6 |
| 95 | $ \, x \, $ | 6 |
| 96 | $ \dfrac{\sqrt{x}}{{\mathrm{e}}^{x}} $ | 6 |
| 97 | $ \, x \, $ | 6 |
| 98 | $ {\mathrm{e}}^{\sqrt{x}} $ | 6 |
| 99 | $ \left({x}^{3}-4{x}^{2}+x\right){\cdot}\left(x-7\right) $ | 6 |
| 100 | $ 60 $ | 6 |