Tap the blue circles to see an explanation.
| $$ \begin{aligned}x+\frac{8}{10}x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(1+\frac{8}{10})x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{9}{5}x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{9x}{5}\end{aligned} $$ | |
| ① | Use the distributive property. |
| ② | Combine like terms |
| ③ | Multiply $ \dfrac{9}{5} $ by $ x $ to get $ \dfrac{ 9x }{ 5 } $. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{9}{5} \cdot x & \xlongequal{\text{Step 1}} \frac{9}{5} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 9 \cdot x }{ 5 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 9x }{ 5 } \end{aligned} $$ |