Tap the blue circles to see an explanation.
| $$ \begin{aligned}x+\frac{5}{9}x-63& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(1+\frac{5}{9})x-63 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{14}{9}x-63 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{14x}{9}-63 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{14x-567}{9}\end{aligned} $$ | |
| ① | Use the distributive property. |
| ② | Combine like terms |
| ③ | Multiply $ \dfrac{14}{9} $ by $ x $ to get $ \dfrac{ 14x }{ 9 } $. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{14}{9} \cdot x & \xlongequal{\text{Step 1}} \frac{14}{9} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 14 \cdot x }{ 9 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 14x }{ 9 } \end{aligned} $$ |
| ④ | Subtract $63$ from $ \dfrac{14x}{9} $ to get $ \dfrac{ \color{purple}{ 14x-567 } }{ 9 }$. Step 1: Write $ 63 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |