Tap the blue circles to see an explanation.
| $$ \begin{aligned}x-\frac{4}{3}x^2-75& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x-\frac{4x^2}{3}-75 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-4x^2+3x}{3}-75 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-4x^2+3x-225}{3}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{4}{3} $ by $ x^2 $ to get $ \dfrac{ 4x^2 }{ 3 } $. Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{4}{3} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{4}{3} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 4 \cdot x^2 }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4x^2 }{ 3 } \end{aligned} $$ |
| ② | Subtract $ \dfrac{4x^2}{3} $ from $ x $ to get $ \dfrac{ \color{purple}{ -4x^2+3x } }{ 3 }$. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Subtract $75$ from $ \dfrac{-4x^2+3x}{3} $ to get $ \dfrac{ \color{purple}{ -4x^2+3x-225 } }{ 3 }$. Step 1: Write $ 75 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |