Tap the blue circles to see an explanation.
| $$ \begin{aligned}x^5-7x^4-30 \cdot \frac{x^3}{x^2}+10x+214x^2-\frac{196}{4}x^3-68x^2+280x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^5-7x^4-\frac{30x^3}{x^2}+10x+214x^2 - \frac{ 196 : \color{orangered}{ 4 } }{ 4 : \color{orangered}{ 4 }} \cdot x^3 - 68x^2 + 280x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{x^7-7x^6-30x^3}{x^2}+10x+214x^2-\frac{49}{1}x^3-68x^2+280x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{x^7-7x^6-20x^3}{x^2}+214x^2-49x^3-68x^2+280x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{x^7-7x^6+214x^4-20x^3}{x^2}-49x^3-68x^2+280x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{x^7-7x^6-49x^5+214x^4-20x^3}{x^2}-68x^2+280x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{x^7-7x^6-49x^5+146x^4-20x^3}{x^2}+280x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} } }}}\frac{x^7-7x^6-49x^5+146x^4+260x^3}{x^2}\end{aligned} $$ | |
| ① | Multiply $30$ by $ \dfrac{x^3}{x^2} $ to get $ \dfrac{ 30x^3 }{ x^2 } $. Step 1: Write $ 30 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 30 \cdot \frac{x^3}{x^2} & \xlongequal{\text{Step 1}} \frac{30}{\color{red}{1}} \cdot \frac{x^3}{x^2} \xlongequal{\text{Step 2}} \frac{ 30 \cdot x^3 }{ 1 \cdot x^2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 30x^3 }{ x^2 } \end{aligned} $$ |
| ② | Divide both the top and bottom numbers by $ \color{orangered}{ 4 } $. |
| ③ | Subtract $ \dfrac{30x^3}{x^2} $ from $ x^5-7x^4 $ to get $ \dfrac{ \color{purple}{ x^7-7x^6-30x^3 } }{ x^2 }$. Step 1: Write $ x^5-7x^4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ④ | Add $ \dfrac{x^7-7x^6-30x^3}{x^2} $ and $ 10x $ to get $ \dfrac{ \color{purple}{ x^7-7x^6-20x^3 } }{ x^2 }$. Step 1: Write $ 10x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑤ | Remove 1 from denominator. |
| ⑥ | Add $ \dfrac{x^7-7x^6-20x^3}{x^2} $ and $ 214x^2 $ to get $ \dfrac{ \color{purple}{ x^7-7x^6+214x^4-20x^3 } }{ x^2 }$. Step 1: Write $ 214x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑦ | Remove 1 from denominator. |
| ⑧ | Subtract $49x^3$ from $ \dfrac{x^7-7x^6+214x^4-20x^3}{x^2} $ to get $ \dfrac{ \color{purple}{ x^7-7x^6-49x^5+214x^4-20x^3 } }{ x^2 }$. Step 1: Write $ 49x^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑨ | Subtract $68x^2$ from $ \dfrac{x^7-7x^6-49x^5+214x^4-20x^3}{x^2} $ to get $ \dfrac{ \color{purple}{ x^7-7x^6-49x^5+146x^4-20x^3 } }{ x^2 }$. Step 1: Write $ 68x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑩ | Add $ \dfrac{x^7-7x^6-49x^5+146x^4-20x^3}{x^2} $ and $ 280x $ to get $ \dfrac{ \color{purple}{ x^7-7x^6-49x^5+146x^4+260x^3 } }{ x^2 }$. Step 1: Write $ 280x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |