Tap the blue circles to see an explanation.
| $$ \begin{aligned}x^2+7x+\frac{6}{x^2}-3x-4& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{x^4+7x^3+6}{x^2}-3x-4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x^4+4x^3+6}{x^2}-4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{x^4+4x^3-4x^2+6}{x^2}\end{aligned} $$ | |
| ① | Add $x^2+7x$ and $ \dfrac{6}{x^2} $ to get $ \dfrac{ \color{purple}{ x^4+7x^3+6 } }{ x^2 }$. Step 1: Write $ x^2+7x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Subtract $3x$ from $ \dfrac{x^4+7x^3+6}{x^2} $ to get $ \dfrac{ \color{purple}{ x^4+4x^3+6 } }{ x^2 }$. Step 1: Write $ 3x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Subtract $4$ from $ \dfrac{x^4+4x^3+6}{x^2} $ to get $ \dfrac{ \color{purple}{ x^4+4x^3-4x^2+6 } }{ x^2 }$. Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |