Tap the blue circles to see an explanation.
| $$ \begin{aligned}x^2+6x-\frac{27}{x^2}+2x-63& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{x^4+6x^3-27}{x^2}+2x-63 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x^4+8x^3-27}{x^2}-63 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{x^4+8x^3-63x^2-27}{x^2}\end{aligned} $$ | |
| ① | Subtract $ \dfrac{27}{x^2} $ from $ x^2+6x $ to get $ \dfrac{ \color{purple}{ x^4+6x^3-27 } }{ x^2 }$. Step 1: Write $ x^2+6x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | Add $ \dfrac{x^4+6x^3-27}{x^2} $ and $ 2x $ to get $ \dfrac{ \color{purple}{ x^4+8x^3-27 } }{ x^2 }$. Step 1: Write $ 2x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ③ | Subtract $63$ from $ \dfrac{x^4+8x^3-27}{x^2} $ to get $ \dfrac{ \color{purple}{ x^4+8x^3-63x^2-27 } }{ x^2 }$. Step 1: Write $ 63 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |