Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\frac{p}{p+4}}{1+\frac{1}{p}-4}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{p}{p+4}}{\frac{p+1}{p}-4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{p}{p+4}}{\frac{-3p+1}{p}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{p^2}{-3p^2-11p+4}\end{aligned} $$ | |
| ① | Add $1$ and $ \dfrac{1}{p} $ to get $ \dfrac{ \color{purple}{ p+1 } }{ p }$. Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Subtract $4$ from $ \dfrac{p+1}{p} $ to get $ \dfrac{ \color{purple}{ -3p+1 } }{ p }$. Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Divide $ \dfrac{p}{p+4} $ by $ \dfrac{-3p+1}{p} $ to get $ \dfrac{p^2}{-3p^2-11p+4} $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{p}{p+4} }{ \frac{\color{blue}{-3p+1}}{\color{blue}{p}} } & \xlongequal{\text{Step 1}} \frac{p}{p+4} \cdot \frac{\color{blue}{p}}{\color{blue}{-3p+1}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ p \cdot p }{ \left( p+4 \right) \cdot \left( -3p+1 \right) } \xlongequal{\text{Step 3}} \frac{ p^2 }{ -3p^2+p-12p+4 } = \\[1ex] &= \frac{p^2}{-3p^2-11p+4} \end{aligned} $$ |