| $$ \begin{aligned}9 \cdot \frac{x}{x^2+x}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{9x}{x^2+x}\end{aligned} $$ | |
| ① | Multiply $9$ by $ \dfrac{x}{x^2+x} $ to get $ \dfrac{ 9x }{ x^2+x } $. Step 1: Write $ 9 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 9 \cdot \frac{x}{x^2+x} & \xlongequal{\text{Step 1}} \frac{9}{\color{red}{1}} \cdot \frac{x}{x^2+x} \xlongequal{\text{Step 2}} \frac{ 9 \cdot x }{ 1 \cdot \left( x^2+x \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 9x }{ x^2+x } \end{aligned} $$ |