Tap the blue circles to see an explanation.
| $$ \begin{aligned}9-\frac{5}{q}r& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}9-\frac{5r}{q} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{9q-5r}{q}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{5}{q} $ by $ r $ to get $ \dfrac{ 5r }{ q } $. Step 1: Write $ r $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{5}{q} \cdot r & \xlongequal{\text{Step 1}} \frac{5}{q} \cdot \frac{r}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 5 \cdot r }{ q \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 5r }{ q } \end{aligned} $$ |
| ② | Subtract $ \dfrac{5r}{q} $ from $ 9 $ to get $ \dfrac{ \color{purple}{ 9q-5r } }{ q }$. Step 1: Write $ 9 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |