Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{6}{x-1}-5\frac{x}{4}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{6}{x-1}-\frac{5x}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-5x^2+5x+24}{4x-4}\end{aligned} $$ | |
| ① | Multiply $5$ by $ \dfrac{x}{4} $ to get $ \dfrac{ 5x }{ 4 } $. Step 1: Write $ 5 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 5 \cdot \frac{x}{4} & \xlongequal{\text{Step 1}} \frac{5}{\color{red}{1}} \cdot \frac{x}{4} \xlongequal{\text{Step 2}} \frac{ 5 \cdot x }{ 1 \cdot 4 } \xlongequal{\text{Step 3}} \frac{ 5x }{ 4 } \end{aligned} $$ |
| ② | Subtract $ \dfrac{5x}{4} $ from $ \dfrac{6}{x-1} $ to get $ \dfrac{ \color{purple}{ -5x^2+5x+24 } }{ 4x-4 }$. To subtract raitonal expressions, both fractions must have the same denominator. |