Tap the blue circles to see an explanation.
| $$ \begin{aligned}4x^2+\frac{12}{x}+7& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4x^3+12}{x}+7 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4x^3+7x+12}{x}\end{aligned} $$ | |
| ① | Add $4x^2$ and $ \dfrac{12}{x} $ to get $ \dfrac{ \color{purple}{ 4x^3+12 } }{ x }$. Step 1: Write $ 4x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Add $ \dfrac{4x^3+12}{x} $ and $ 7 $ to get $ \dfrac{ \color{purple}{ 4x^3+7x+12 } }{ x }$. Step 1: Write $ 7 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |