Tap the blue circles to see an explanation.
| $$ \begin{aligned}4 \cdot \frac{x}{6x^2+13x+6}-3\frac{x}{4x^2+9}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4x}{6x^2+13x+6}-\frac{3x}{4x^2+9} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-2x^3-39x^2+18x}{24x^4+52x^3+78x^2+117x+54}\end{aligned} $$ | |
| ① | Multiply $4$ by $ \dfrac{x}{6x^2+13x+6} $ to get $ \dfrac{ 4x }{ 6x^2+13x+6 } $. Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 4 \cdot \frac{x}{6x^2+13x+6} & \xlongequal{\text{Step 1}} \frac{4}{\color{red}{1}} \cdot \frac{x}{6x^2+13x+6} \xlongequal{\text{Step 2}} \frac{ 4 \cdot x }{ 1 \cdot \left( 6x^2+13x+6 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4x }{ 6x^2+13x+6 } \end{aligned} $$ |
| ② | Multiply $3$ by $ \dfrac{x}{4x^2+9} $ to get $ \dfrac{ 3x }{ 4x^2+9 } $. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3 \cdot \frac{x}{4x^2+9} & \xlongequal{\text{Step 1}} \frac{3}{\color{red}{1}} \cdot \frac{x}{4x^2+9} \xlongequal{\text{Step 2}} \frac{ 3 \cdot x }{ 1 \cdot \left( 4x^2+9 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3x }{ 4x^2+9 } \end{aligned} $$ |
| ③ | Subtract $ \dfrac{3x}{4x^2+9} $ from $ \dfrac{4x}{6x^2+13x+6} $ to get $ \dfrac{ \color{purple}{ -2x^3-39x^2+18x } }{ 24x^4+52x^3+78x^2+117x+54 }$. To subtract raitonal expressions, both fractions must have the same denominator. |