Tap the blue circles to see an explanation.
| $$ \begin{aligned}42 \cdot \frac{x^4}{12}x^6& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{42x^4}{12}x^6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{42x^{10}}{12}\end{aligned} $$ | |
| ① | Multiply $42$ by $ \dfrac{x^4}{12} $ to get $ \dfrac{ 42x^4 }{ 12 } $. Step 1: Write $ 42 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 42 \cdot \frac{x^4}{12} & \xlongequal{\text{Step 1}} \frac{42}{\color{red}{1}} \cdot \frac{x^4}{12} \xlongequal{\text{Step 2}} \frac{ 42 \cdot x^4 }{ 1 \cdot 12 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 42x^4 }{ 12 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{42x^4}{12} $ by $ x^6 $ to get $ \dfrac{ 42x^{10} }{ 12 } $. Step 1: Write $ x^6 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{42x^4}{12} \cdot x^6 & \xlongequal{\text{Step 1}} \frac{42x^4}{12} \cdot \frac{x^6}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 42x^4 \cdot x^6 }{ 12 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 42x^{10} }{ 12 } \end{aligned} $$ |