Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{4}{x}+3-3\frac{x}{x}-3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3x+4}{x}-\frac{3x}{x}-3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{4}{x}-3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-3x+4}{x}\end{aligned} $$ | |
| ① | Add $ \dfrac{4}{x} $ and $ 3 $ to get $ \dfrac{ \color{purple}{ 3x+4 } }{ x }$. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Multiply $3$ by $ \dfrac{x}{x} $ to get $ \dfrac{ 3x }{ x } $. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3 \cdot \frac{x}{x} & \xlongequal{\text{Step 1}} \frac{3}{\color{red}{1}} \cdot \frac{x}{x} \xlongequal{\text{Step 2}} \frac{ 3 \cdot x }{ 1 \cdot x } \xlongequal{\text{Step 3}} \frac{ 3x }{ x } \end{aligned} $$ |
| ③ | Subtract $ \dfrac{3x}{x} $ from $ \dfrac{3x+4}{x} $ to get $ \dfrac{4}{x} $. To subtract expressions with the same denominators, we subtract the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{3x+4}{x} - \frac{3x}{x} & = \frac{3x+4}{\color{blue}{x}} - \frac{3x}{\color{blue}{x}} =\frac{ 3x+4 - 3x }{ \color{blue}{ x }} = \\[1ex] &= \frac{4}{x} \end{aligned} $$ |
| ④ | Subtract $3$ from $ \dfrac{4}{x} $ to get $ \dfrac{ \color{purple}{ -3x+4 } }{ x }$. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |