Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{4}{5}+3c-10& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{15c+4}{5}-10 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{15c-46}{5}\end{aligned} $$ | |
| ① | Add $ \dfrac{4}{5} $ and $ 3c $ to get $ \dfrac{ \color{purple}{ 15c+4 } }{ 5 }$. Step 1: Write $ 3c $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Subtract $10$ from $ \dfrac{15c+4}{5} $ to get $ \dfrac{ \color{purple}{ 15c-46 } }{ 5 }$. Step 1: Write $ 10 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |