Tap the blue circles to see an explanation.
| $$ \begin{aligned}3 \cdot \frac{b}{b}-2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3b}{b}-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{b}{b}\end{aligned} $$ | |
| ① | Multiply $3$ by $ \dfrac{b}{b} $ to get $ \dfrac{ 3b }{ b } $. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3 \cdot \frac{b}{b} & \xlongequal{\text{Step 1}} \frac{3}{\color{red}{1}} \cdot \frac{b}{b} \xlongequal{\text{Step 2}} \frac{ 3 \cdot b }{ 1 \cdot b } \xlongequal{\text{Step 3}} \frac{ 3b }{ b } \end{aligned} $$ |
| ② | Subtract $2$ from $ \dfrac{3b}{b} $ to get $ \dfrac{ \color{purple}{ b } }{ b }$. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |