Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{3}{5}+x+9& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{5x+3}{5}+9 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5x+48}{5}\end{aligned} $$ | |
| ① | Add $ \dfrac{3}{5} $ and $ x $ to get $ \dfrac{ \color{purple}{ 5x+3 } }{ 5 }$. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Add $ \dfrac{5x+3}{5} $ and $ 9 $ to get $ \dfrac{ \color{purple}{ 5x+48 } }{ 5 }$. Step 1: Write $ 9 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |