Tap the blue circles to see an explanation.
| $$ \begin{aligned}15+2a-\frac{a^2}{a^2}+a-30& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2a^3+14a^2}{a^2}+a-30 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3a^3+14a^2}{a^2}-30 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{3a^3-16a^2}{a^2}\end{aligned} $$ | |
| ① | Subtract $ \dfrac{a^2}{a^2} $ from $ 15+2a $ to get $ \dfrac{ \color{purple}{ 2a^3+14a^2 } }{ a^2 }$. Step 1: Write $ 15+2a $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | Add $ \dfrac{2a^3+14a^2}{a^2} $ and $ a $ to get $ \dfrac{ \color{purple}{ 3a^3+14a^2 } }{ a^2 }$. Step 1: Write $ a $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ③ | Subtract $30$ from $ \dfrac{3a^3+14a^2}{a^2} $ to get $ \dfrac{ \color{purple}{ 3a^3-16a^2 } }{ a^2 }$. Step 1: Write $ 30 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |