| $$ \begin{aligned}\frac{11}{x}(x^2+11)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{11x^2+121}{x}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{11}{x} $ by $ x^2+11 $ to get $ \dfrac{ 11x^2+121 }{ x } $. Step 1: Write $ x^2+11 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{11}{x} \cdot x^2+11 & \xlongequal{\text{Step 1}} \frac{11}{x} \cdot \frac{x^2+11}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 11 \cdot \left( x^2+11 \right) }{ x \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 11x^2+121 }{ x } \end{aligned} $$ |