Tap the blue circles to see an explanation.
| $$ \begin{aligned}10u+\frac{2}{u^2}+4u-49-(5u+10)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{10u^3+2}{u^2}+4u-49-(5u+10) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{14u^3+2}{u^2}-49-(5u+10) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{14u^3-49u^2+2}{u^2}-(5u+10) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{9u^3-59u^2+2}{u^2}\end{aligned} $$ | |
| ① | Add $10u$ and $ \dfrac{2}{u^2} $ to get $ \dfrac{ \color{purple}{ 10u^3+2 } }{ u^2 }$. Step 1: Write $ 10u $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Add $ \dfrac{10u^3+2}{u^2} $ and $ 4u $ to get $ \dfrac{ \color{purple}{ 14u^3+2 } }{ u^2 }$. Step 1: Write $ 4u $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ③ | Subtract $49$ from $ \dfrac{14u^3+2}{u^2} $ to get $ \dfrac{ \color{purple}{ 14u^3-49u^2+2 } }{ u^2 }$. Step 1: Write $ 49 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ④ | Subtract $5u+10$ from $ \dfrac{14u^3-49u^2+2}{u^2} $ to get $ \dfrac{ \color{purple}{ 9u^3-59u^2+2 } }{ u^2 }$. Step 1: Write $ 5u+10 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |