Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{x^2}-4+\frac{6}{x}+2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-4x^2+1}{x^2}+\frac{6}{x}+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-4x^3+6x^2+x}{x^3}+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-2x^3+6x^2+x}{x^3}\end{aligned} $$ | |
| ① | Subtract $4$ from $ \dfrac{1}{x^2} $ to get $ \dfrac{ \color{purple}{ -4x^2+1 } }{ x^2 }$. Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | Add $ \dfrac{-4x^2+1}{x^2} $ and $ \dfrac{6}{x} $ to get $ \dfrac{ \color{purple}{ -4x^3+6x^2+x } }{ x^3 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ③ | Add $ \dfrac{-4x^3+6x^2+x}{x^3} $ and $ 2 $ to get $ \dfrac{ \color{purple}{ -2x^3+6x^2+x } }{ x^3 }$. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |