Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{m}+8x\cdot7m^2+56\frac{m}{7}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{m}+56m^2x+56\frac{m}{7} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{56m^3x+1}{m}+\frac{56m}{7} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{392m^3x+56m^2+7}{7m}\end{aligned} $$ | |
| ① | $$ 8 x \cdot 7 m^2 = 56 m^{2} x $$ |
| ② | Add $ \dfrac{1}{m} $ and $ 56m^2x $ to get $ \dfrac{ \color{purple}{ 56m^3x+1 } }{ m }$. Step 1: Write $ 56m^2x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ③ | Multiply $56$ by $ \dfrac{m}{7} $ to get $ \dfrac{ 56m }{ 7 } $. Step 1: Write $ 56 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 56 \cdot \frac{m}{7} & \xlongequal{\text{Step 1}} \frac{56}{\color{red}{1}} \cdot \frac{m}{7} \xlongequal{\text{Step 2}} \frac{ 56 \cdot m }{ 1 \cdot 7 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 56m }{ 7 } \end{aligned} $$ |
| ④ | Add $ \dfrac{56m^3x+1}{m} $ and $ \dfrac{56m}{7} $ to get $ \dfrac{ \color{purple}{ 392m^3x+56m^2+7 } }{ 7m }$. To add raitonal expressions, both fractions must have the same denominator. |