Tap the blue circles to see an explanation.
| $$ \begin{aligned}-\frac{5}{9}+\frac{5}{4}x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-\frac{5}{9}+\frac{5x}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{45x-20}{36}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{5}{4} $ by $ x $ to get $ \dfrac{ 5x }{ 4 } $. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{5}{4} \cdot x & \xlongequal{\text{Step 1}} \frac{5}{4} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 5 \cdot x }{ 4 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 5x }{ 4 } \end{aligned} $$ |
| ② | Add $ \dfrac{-5}{9} $ and $ \dfrac{5x}{4} $ to get $ \dfrac{ \color{purple}{ 45x-20 } }{ 36 }$. To add raitonal expressions, both fractions must have the same denominator. |