Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{x+3}{x^2}-16(5x+20)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{x+3}{x^2}-(80x+320) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-80x^3-320x^2+x+3}{x^2}\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{16} $ by $ \left( 5x+20\right) $ $$ \color{blue}{16} \cdot \left( 5x+20\right) = 80x+320 $$ |
| ② | Subtract $80x+320$ from $ \dfrac{x+3}{x^2} $ to get $ \dfrac{ \color{purple}{ -80x^3-320x^2+x+3 } }{ x^2 }$. Step 1: Write $ 80x+320 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |