| $$ \begin{aligned}\frac{x-3}{2x^2-7x+3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{2x-1}\end{aligned} $$ | |
| ① | Simplify $ \dfrac{x-3}{2x^2-7x+3} $ to $ \dfrac{1}{2x-1} $. Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{x-3}$. $$ \begin{aligned} \frac{x-3}{2x^2-7x+3} & =\frac{ 1 \cdot \color{blue}{ \left( x-3 \right) }}{ \left( 2x-1 \right) \cdot \color{blue}{ \left( x-3 \right) }} = \\[1ex] &= \frac{1}{2x-1} \end{aligned} $$ |