Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{x-25}{5x-25}+\frac{3x+5}{x^2-5x}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{x^2-10x+25}{5x^2-25x} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x-5}{5x}\end{aligned} $$ | |
| ① | Add $ \dfrac{x-25}{5x-25} $ and $ \dfrac{3x+5}{x^2-5x} $ to get $ \dfrac{ \color{purple}{ x^2-10x+25 } }{ 5x^2-25x }$. To add raitonal expressions, both fractions must have the same denominator. |
| ② | Simplify $ \dfrac{x^2-10x+25}{5x^2-25x} $ to $ \dfrac{x-5}{5x} $. Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{x-5}$. $$ \begin{aligned} \frac{x^2-10x+25}{5x^2-25x} & =\frac{ \left( x-5 \right) \cdot \color{blue}{ \left( x-5 \right) }}{ 5x \cdot \color{blue}{ \left( x-5 \right) }} = \\[1ex] &= \frac{x-5}{5x} \end{aligned} $$ |