| $$ \begin{aligned}\frac{x-2}{2x^2-4x}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{2x}\end{aligned} $$ | |
| ① | Simplify $ \dfrac{x-2}{2x^2-4x} $ to $ \dfrac{1}{2x} $. Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{x-2}$. $$ \begin{aligned} \frac{x-2}{2x^2-4x} & =\frac{ 1 \cdot \color{blue}{ \left( x-2 \right) }}{ 2x \cdot \color{blue}{ \left( x-2 \right) }} = \\[1ex] &= \frac{1}{2x} \end{aligned} $$ |