Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{x^2}{x-4}+\frac{16}{4-x}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-x^2+16}{-x+4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x+4\end{aligned} $$ | |
| ① | Add $ \dfrac{x^2}{x-4} $ and $ \dfrac{16}{4-x} $ to get $ \dfrac{ \color{purple}{ -x^2+16 } }{ -x+4 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ② | Simplify $ \dfrac{-x^2+16}{-x+4} $ to $ x+4$. Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{x-4}$. $$ \begin{aligned} \frac{-x^2+16}{-x+4} & =\frac{ \left( -x-4 \right) \cdot \color{blue}{ \left( x-4 \right) }}{ \left( -1 \right) \cdot \color{blue}{ \left( x-4 \right) }} = \\[1ex] &= \frac{x+4}{1} =x+4 \end{aligned} $$ |