| $$ \begin{aligned}\frac{r^2-2r}{4r}-\frac{2}{r}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{r^3-2r^2-8r}{4r^2}\end{aligned} $$ | |
| ① | Subtract $ \dfrac{2}{r} $ from $ \dfrac{r^2-2r}{4r} $ to get $ \dfrac{ \color{purple}{ r^3-2r^2-8r } }{ 4r^2 }$. To subtract raitonal expressions, both fractions must have the same denominator. |