Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{m+7}{m^2}+4m-21& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4m^3+m+7}{m^2}-21 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4m^3-21m^2+m+7}{m^2}\end{aligned} $$ | |
| ① | Add $ \dfrac{m+7}{m^2} $ and $ 4m $ to get $ \dfrac{ \color{purple}{ 4m^3+m+7 } }{ m^2 }$. Step 1: Write $ 4m $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Subtract $21$ from $ \dfrac{4m^3+m+7}{m^2} $ to get $ \dfrac{ \color{purple}{ 4m^3-21m^2+m+7 } }{ m^2 }$. Step 1: Write $ 21 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |