Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{3x^2-3}{x^2}+2x-3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2x^3+3x^2-3}{x^2}-3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2x^3-3}{x^2}\end{aligned} $$ | |
| ① | Add $ \dfrac{3x^2-3}{x^2} $ and $ 2x $ to get $ \dfrac{ \color{purple}{ 2x^3+3x^2-3 } }{ x^2 }$. Step 1: Write $ 2x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Subtract $3$ from $ \dfrac{2x^3+3x^2-3}{x^2} $ to get $ \dfrac{ \color{purple}{ 2x^3-3 } }{ x^2 }$. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |