Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2x^2-32}{4}x-16& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2x^3-32x}{4}-16 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2x^3-32x-64}{4}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{2x^2-32}{4} $ by $ x $ to get $ \dfrac{ 2x^3-32x }{ 4 } $. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{2x^2-32}{4} \cdot x & \xlongequal{\text{Step 1}} \frac{2x^2-32}{4} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( 2x^2-32 \right) \cdot x }{ 4 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2x^3-32x }{ 4 } \end{aligned} $$ |
| ② | Subtract $16$ from $ \dfrac{2x^3-32x}{4} $ to get $ \dfrac{ \color{purple}{ 2x^3-32x-64 } }{ 4 }$. Step 1: Write $ 16 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |