Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\frac{2+\frac{1}{x}}{x}}{y}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{\frac{2x+1}{x}}{x}}{y} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{2x+1}{x^2}}{y} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2x+1}{x^2y}\end{aligned} $$ | |
| ① | Add $2$ and $ \dfrac{1}{x} $ to get $ \dfrac{ \color{purple}{ 2x+1 } }{ x }$. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Divide $ \dfrac{2x+1}{x} $ by $ x $ to get $ \dfrac{ 2x+1 }{ x^2 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{2x+1}{x} }{x} & \xlongequal{\text{Step 1}} \frac{2x+1}{x} \cdot \frac{\color{blue}{1}}{\color{blue}{x}} \xlongequal{\text{Step 2}} \frac{ \left( 2x+1 \right) \cdot 1 }{ x \cdot x } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2x+1 }{ x^2 } \end{aligned} $$ |
| ③ | Divide $ \dfrac{2x+1}{x^2} $ by $ y $ to get $ \dfrac{ 2x+1 }{ x^2y } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{2x+1}{x^2} }{y} & \xlongequal{\text{Step 1}} \frac{2x+1}{x^2} \cdot \frac{\color{blue}{1}}{\color{blue}{y}} \xlongequal{\text{Step 2}} \frac{ \left( 2x+1 \right) \cdot 1 }{ x^2 \cdot y } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2x+1 }{ x^2y } \end{aligned} $$ |