Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{25x^2-y^2}{125}x^3-y^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{25x^5-x^3y^2}{125}-y^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{25x^5-x^3y^2-125y^3}{125}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{25x^2-y^2}{125} $ by $ x^3 $ to get $ \dfrac{ 25x^5-x^3y^2 }{ 125 } $. Step 1: Write $ x^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{25x^2-y^2}{125} \cdot x^3 & \xlongequal{\text{Step 1}} \frac{25x^2-y^2}{125} \cdot \frac{x^3}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( 25x^2-y^2 \right) \cdot x^3 }{ 125 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 25x^5-x^3y^2 }{ 125 } \end{aligned} $$ |
| ② | Subtract $y^3$ from $ \dfrac{25x^5-x^3y^2}{125} $ to get $ \dfrac{ \color{purple}{ 25x^5-x^3y^2-125y^3 } }{ 125 }$. Step 1: Write $ y^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |