Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{-\frac{7}{3}}{x}+\frac{1}{x^2}+\frac{\frac{7}{3}x+1}{x^2+x+1}-\frac{x+1}{(x^2+x+1)^2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-\frac{7}{3x}+\frac{1}{x^2}+\frac{\frac{7x}{3}+1}{x^2+x+1}-\frac{x+1}{x^4+2x^3+3x^2+2x+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{-7x^2+3x}{3x^3}+\frac{\frac{7x+3}{3}}{x^2+x+1}-\frac{x+1}{x^4+2x^3+3x^2+2x+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} \htmlClass{explanationCircle explanationCircle11}{\textcircled {11}} \htmlClass{explanationCircle explanationCircle12}{\textcircled {12}} } }}}\frac{-7x^2+3x}{3x^3}+\frac{7x+3}{3x^2+3x+3}-\frac{x+1}{x^4+2x^3+3x^2+2x+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle13}{\textcircled {13}} \htmlClass{explanationCircle explanationCircle14}{\textcircled {14}} \htmlClass{explanationCircle explanationCircle15}{\textcircled {15}} } }}}\frac{-3x^3-12x^2+9x}{9x^5+9x^4+9x^3}-\frac{x+1}{x^4+2x^3+3x^2+2x+1} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{-x^2-4x+3}{3x^4+3x^3+3x^2}-\frac{x+1}{x^4+2x^3+3x^2+2x+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle16}{\textcircled {16}} } }}}\frac{-x^4-8x^3-5x^2-x+3}{3x^6+6x^5+9x^4+6x^3+3x^2}\end{aligned} $$ | |
| ① | Divide $ \dfrac{-7}{3} $ by $ x $ to get $ \dfrac{ -7 }{ 3x } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{-7}{3} }{x} & \xlongequal{\text{Step 1}} \frac{-7}{3} \cdot \frac{\color{blue}{1}}{\color{blue}{x}} \xlongequal{\text{Step 2}} \frac{ \left( -7 \right) \cdot 1 }{ 3 \cdot x } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -7 }{ 3x } \end{aligned} $$ |
| ② | Multiply $ \dfrac{7}{3} $ by $ x $ to get $ \dfrac{ 7x }{ 3 } $. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{7}{3} \cdot x & \xlongequal{\text{Step 1}} \frac{7}{3} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 7 \cdot x }{ 3 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 7x }{ 3 } \end{aligned} $$ |
| ③ | Multiply each term of $ \left( \color{blue}{x^2+x+1}\right) $ by each term in $ \left( x^2+x+1\right) $. $$ \left( \color{blue}{x^2+x+1}\right) \cdot \left( x^2+x+1\right) = x^4+x^3+x^2+x^3+x^2+x+x^2+x+1 $$ |
| ④ | Combine like terms: $$ x^4+ \color{blue}{x^3} + \color{red}{x^2} + \color{blue}{x^3} + \color{green}{x^2} + \color{orange}{x} + \color{green}{x^2} + \color{orange}{x} +1 = x^4+ \color{blue}{2x^3} + \color{green}{3x^2} + \color{orange}{2x} +1 $$ |
| ⑤ | Add $ \dfrac{-7}{3x} $ and $ \dfrac{1}{x^2} $ to get $ \dfrac{ \color{purple}{ -7x^2+3x } }{ 3x^3 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑥ | Add $ \dfrac{7x}{3} $ and $ 1 $ to get $ \dfrac{ \color{purple}{ 7x+3 } }{ 3 }$. Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑦ | Multiply each term of $ \left( \color{blue}{x^2+x+1}\right) $ by each term in $ \left( x^2+x+1\right) $. $$ \left( \color{blue}{x^2+x+1}\right) \cdot \left( x^2+x+1\right) = x^4+x^3+x^2+x^3+x^2+x+x^2+x+1 $$ |
| ⑧ | Combine like terms: $$ x^4+ \color{blue}{x^3} + \color{red}{x^2} + \color{blue}{x^3} + \color{green}{x^2} + \color{orange}{x} + \color{green}{x^2} + \color{orange}{x} +1 = x^4+ \color{blue}{2x^3} + \color{green}{3x^2} + \color{orange}{2x} +1 $$ |
| ⑨ | Add $ \dfrac{-7}{3x} $ and $ \dfrac{1}{x^2} $ to get $ \dfrac{ \color{purple}{ -7x^2+3x } }{ 3x^3 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑩ | Divide $ \dfrac{7x+3}{3} $ by $ x^2+x+1 $ to get $ \dfrac{ 7x+3 }{ 3x^2+3x+3 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{7x+3}{3} }{x^2+x+1} & \xlongequal{\text{Step 1}} \frac{7x+3}{3} \cdot \frac{\color{blue}{1}}{\color{blue}{x^2+x+1}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( 7x+3 \right) \cdot 1 }{ 3 \cdot \left( x^2+x+1 \right) } \xlongequal{\text{Step 3}} \frac{ 7x+3 }{ 3x^2+3x+3 } \end{aligned} $$ |
| ⑪ | Multiply each term of $ \left( \color{blue}{x^2+x+1}\right) $ by each term in $ \left( x^2+x+1\right) $. $$ \left( \color{blue}{x^2+x+1}\right) \cdot \left( x^2+x+1\right) = x^4+x^3+x^2+x^3+x^2+x+x^2+x+1 $$ |
| ⑫ | Combine like terms: $$ x^4+ \color{blue}{x^3} + \color{red}{x^2} + \color{blue}{x^3} + \color{green}{x^2} + \color{orange}{x} + \color{green}{x^2} + \color{orange}{x} +1 = x^4+ \color{blue}{2x^3} + \color{green}{3x^2} + \color{orange}{2x} +1 $$ |
| ⑬ | Add $ \dfrac{-7x^2+3x}{3x^3} $ and $ \dfrac{7x+3}{3x^2+3x+3} $ to get $ \dfrac{ \color{purple}{ -3x^3-12x^2+9x } }{ 9x^5+9x^4+9x^3 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑭ | Multiply each term of $ \left( \color{blue}{x^2+x+1}\right) $ by each term in $ \left( x^2+x+1\right) $. $$ \left( \color{blue}{x^2+x+1}\right) \cdot \left( x^2+x+1\right) = x^4+x^3+x^2+x^3+x^2+x+x^2+x+1 $$ |
| ⑮ | Combine like terms: $$ x^4+ \color{blue}{x^3} + \color{red}{x^2} + \color{blue}{x^3} + \color{green}{x^2} + \color{orange}{x} + \color{green}{x^2} + \color{orange}{x} +1 = x^4+ \color{blue}{2x^3} + \color{green}{3x^2} + \color{orange}{2x} +1 $$ |
| ⑯ | Subtract $ \dfrac{x+1}{x^4+2x^3+3x^2+2x+1} $ from $ \dfrac{-x^2-4x+3}{3x^4+3x^3+3x^2} $ to get $ \dfrac{ \color{purple}{ -x^4-8x^3-5x^2-x+3 } }{ 3x^6+6x^5+9x^4+6x^3+3x^2 }$. To subtract raitonal expressions, both fractions must have the same denominator. |