Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{-7\cdot\frac{6}{7}+10}{-\frac{6}{7}+2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4}{\frac{8}{7}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{7}{2}\end{aligned} $$ | |
| ① | Combine like terms |
| ② | Combine like terms |
| ③ | Divide $4$ by $ \dfrac{8}{7} $ to get $ \dfrac{7}{2} $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ 4 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Cancel down by $ \color{blue}{4} $ $$ \begin{aligned} \frac{4}{ \frac{\color{blue}{8}}{\color{blue}{7}} } & \xlongequal{\text{Step 1}} 4 \cdot \frac{\color{blue}{7}}{\color{blue}{8}} \xlongequal{\text{Step 2}} \frac{4}{\color{red}{1}} \cdot \frac{7}{8} = \\[1ex] & \xlongequal{\text{Step 3}} \frac{28 : \color{blue}{4}}{8 : \color{blue}{4}}= \frac{7}{2} \end{aligned} $$ |